An Efficient MAC Protocol with Power Conservation Concept in Mobile Ad-hoc Network

Rahul Mukherjee,
Head of Department (HOD), Electronics & Communication Department,
St. Aloysius Institute of Technology (SAIT), Jabalpur; Rajiv Gandhi Technical University (RGTU), India

Abstract – The Mobile Ad-hoc Networks are wireless networks that have no fixed infrastructure. There are no fixed routers-instead each node acts as router and forwards traffic from other nodes. Since the nodes in a MANET are highly mobile, the topology changes frequently and the nodes are dynamically connected in an arbitrary manner. Wireless network adopts centralized transmission technique for transmission of power. But typical wireless ad hoc network do not have centralized coordinators for transmission of power, so it is difficult for a node in ad hoc network to predict the future transmissions of its neighbors.

Keywords - MANET, 802.11, Media Access Control(MAC), DCF, Carrier Sense Multiple Access(CSMA).

I. INTRODUCTION

Wireless ad hoc networks face challenges that are not present in wired networks. In wired networks, transmission errors typically occur at a low rate and interference among different communication flows is minimal.

Power saving mechanisms allows a node to enter a doze state by powering off its wireless network interface when deemed reasonable. Another alternative is to use power control schemes which suitably vary transmit power to reduce energy consumption. In addition to providing energy saving, power control can potentially be used to improve spatial reuse of the wireless channel. In this paper, we study power control for the purpose of energy saving.

Figure 1. Wireless Ad-hoc Network

Mobile Ad-hoc Network (MANET) is a self configuring infrastructure-less network of mobile devices connected by wireless. The Media Access Control (MAC) data communication protocol sub-layer provides addressing and channel access control mechanisms that make it possible for network nodes to access common wireless channel through distributed coordination function (DCF). Wireless network adopts centralized transmission technique for transmission of power.

II. REQUIREMENTS AND CHALLENGES OF MULTI-HOP WIRELESS NETWORKS

A. Bandwidth

Bandwidth is the one of the most scarce resource in wireless networks. The available bandwidth in wireless networks (2-10Mbps) is far less than the wired links (typically 100Mbps).

B. Range Issues

The transmission range of stations depends upon the transmitted power and various sensitivity values. Unlike wired networks all stations on a LAN cannot listen to one another.

C. Power

The wireless stations are battery operated and therefore higher transmission power leads to faster degeneration of the batteries. On the other hand, if we keep transmission power too small, the stations may no longer be in range of each other.

D. Collisions

Since all stations can not listen to each other, transmission from two stations may lead to collision at another station.

E. Link Errors

Channel fading and interference cause link errors and these errors may sometimes be very severe.

F. Hidden node Problem

Stations A and C become hidden to each other as station B can listen both to A and C, but stations A and C cannot listen to each other. If a packet is being transmitted from station A to station B and station C decides to start a transmission (being hidden, it does not know of A-B transmission), there will be collision at station B.

G. Exposed node Problem

If station B is sending data to station A, then station C becomes exposed to B and is forced to be silent even if it can send data to another station. This is because station C finds carrier busy during transmission of station B.
III. CSMA/CA

The most important part of a MAC protocol is Channel Access Mechanism. The channel access mechanism is way of regulating the use of physical channel among the stations present in the network. It specifies when a station can send or receive data on the channel.

CSMA/CA (Carrier Sense Multiple Access) is derived from CSMA/CD (Collision Detection) which is the channel access mechanism used in wired Ethernets. Since the transmission range of wireless stations is limited, collision cannot be detected directly. This protocols tries to avoid the collision. On arrival of a data packet from LLC, a station senses the channel before transmission and if found idle, starts transmission. If another transmission is going on, the station waits for the length of current transmission, and starts contention. Since the contention is a random time, each station get statistically equal chance to win the contention.

Figure 2. CSMA Channel Access Mechanism

CSMA/CA is asynchronous mechanism for medium access and does not provide any bandwidth guarantee. It’s a best effort service and is suited for packetized applications like TCP/IP. It adapts quite well to the variable traffic conditions and is quite robust against interference.

Figure 3. Flow chart of CSMA/CA

III. CLASSIFICATION OF MAC PROTOCOL

MAC protocols for ad-hoc wireless networks can be classified into several categories based on various criteria such as initiation approach, time synchronization, and reservation approach. Ad-hoc Network MAC protocols are classified in three types:
- Contention based protocols.
- Contention based protocols with reservation mechanism.
- Contention based protocols with scheduling mechanism.

A. Contention Based Protocols

These protocols follow a contention based channel access policy. A node doesn’t make any resource reservation in priori. Whenever it receives a packet to be transmitted, it contends with other nodes for access to the shared channel. These are further divided into two types:
- Sender initiated protocols
- Receiver initiated protocols

B. Contention Based Protocol with Reservation Mechanisms

Ad-hoc wireless networks sometimes may need to support real time traffic, which requires QoS guarantees to be provided. In order to support such traffic, certain protocols have mechanism for reserving bandwidth in priori. These protocols are classified into two types:
- Synchronous protocols
- Asynchronous protocols

C. Contention Based Protocol with Scheduling Mechanisms

These protocols focus on packet scheduling at nodes, and also scheduling nodes for access to the channel. Node scheduling is done in a manner so that all nodes are treated fairly. Scheduling based scheme are also used for enforcing priorities among flows whose packets are queued at nodes.
IV. IEEE 802.11 OPERATION

The IEEE 802.11 MAC offers two kinds of medium access methods, namely Distributed Coordination Function (DCF), and Point Coordination Function (PCF). DCF is the basic access method in 802.11 and requires no infrastructure. When wireless stations are within transmit range of each other, they form a Basic Service Set (BSS), and can communicate to each other using DCF. If the BSS contains only two stations, it is called Independent Basic Service Set (IBSS). Many BSSs may be connected by a Distribution System (DS) to form an Extended Service Set (ESS). An access point (AP) is the station that provides access to DS services.

IEEE 802.11 Architecture

The IEEE 802.11 MAC is designed for wireless LANs. The requirements of multi-hop ad-hoc networks are more challenging than those of wireless LANs. In this research, we investigate the operation of IEEE 802.11 MAC in centralized multi-hop ad-hoc networks. The terms station and node are used interchangeably throughout the thesis. Multi-hop cooperative wireless ad-hoc networks will be simply referred to as multi-hop networks.

V. IEEE 802.11 SCHEME SPECIFICATION

IEEE 802.11 specifies two medium access control protocols, PCF (Point Coordination Function) and DCF (Distributed Coordination Function). PCF is a centralized scheme, whereas DCF is a fully distributed scheme. We consider DCF in this paper.
Figure 9. Transmission & Carrier Sensing Ranges

- **Transmission range**: When a node is within transmission range of a sender node, it can receive and correctly decode packets from the sender node. In our simulations, the transmission range is 250 m when using the highest transmit power level.

- **Carrier sensing range**: Nodes in the carrier sensing range can sense the sender’s transmission. Carrier sensing range is typically larger than the transmission range, for instance, two times larger than the transmission range. In our simulations, the carrier sensing range is 550 m when using the highest power level. Note that the carrier sensing range and transmission range depend on the transmit power level.

- **Carrier sensing zone**: When a node is within the carrier sensing zone, it can sense the signal but cannot decode it correctly. Note that, as per our definition here, the carrier sensing zone does not include transmission range. Nodes in the transmission range can indeed sense the transmission, but they can also decode it correctly. The carrier sensing zone is between 250 m and 550 m with the highest power level in our simulation.

VI. MAC SUB LAYER IN IEEE 802.11

The IEEE standard 802.11 specifies the most famous family of WLANs in which many products are already available. This means that the standard specifies the physical and medium access layer adapted to the special requirements of wireless LANs, but offers the same interface as the others to higher layers to maintain interoperability.

- **System Architecture**

The basic service set (BSS) is the fundamental building block of the IEEE 802.11 architecture. A BSS is defined as a group of stations that are under the direct control of a single coordination function (i.e., a DCF or PCF) which is defined below. The geographical area covered by the BSS is known as the basic service area (BSA), which is analogous to a cell in a cellular communications network.

![Figure 11. System Architecture of Ad-hoc network](image)

In contrast to the ad hoc network, infrastructure networks are established to provide wireless users with specific services and range extension. Infrastructure networks in the context of IEEE 802.11 are established using APs. The AP supports range extension by providing the integration points necessary for network connectivity between multiple BSSs, thus forming an extended service set (ESS).

![Figure 12. Example of infrastructure network](image)
VII. DCF OPERATION

The DCF is the fundamental access method used to support asynchronous data transfer on a best effort basis. The DCF is based on CSMA/CA. The carrier sense is performed at both the air interface, referred to as physical carrier sensing, and at the MAC sub layer, referred to as virtual carrier sensing. Physical carrier sensing detects presence of other users by analyzing the activity in the channel through the received signal strength.

The basic medium access protocol is a DCF that allows for automatic medium sharing between compatible PHYs through the use of CSMA/CA and a random back-off time following a busy medium condition. The DCF shall be implemented in all stations, for use within both IBSS and infrastructure network configuration.

The DCF in IEEE 802.11 is based on CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance). Carrier sensing is performed using physical carrier sensing (by air interface) as well as virtual carrier sensing. Virtual carrier sensing uses the duration of the packet transmission, which is included in the header of RTS, CTS, and DATA frames. The duration included in each of these frames can be used to infer the time when the source node would receive an ACK frame from the destination node. For example, the duration field in RTS includes times for CTS, DATA, and ACK transmissions. Similarly, the duration field for CTS includes time for DATA and ACK transmissions, and the duration field for DATA only includes time for the ACK transmission.

\[
\text{EIFS} = \text{SIFS} + \text{DIFS} + \left[(8 \cdot \text{ACK size}) + \text{Preamble Length} + \text{PLCP Header Length} \right] / \text{Bit Rate}
\]

where ACK size is the length (in bytes) of an ACK frame, and Bit Rate is the physical layer’s lowest mandatory rate. Preamble Length is 144 bits and PLCP Header Length is 48 bits. Using a 1 Mbps channel bit rate, EIFS is equal to 364 μs.

Figure 13. DCF access using RTS/CTS

- **IFS** is the time interval between frames. IEEE 802.11 defines four IFSs – SIFS (short inter frame space), PIFS (PCF inter frame space), DIFS (DCF inter frame space), and EIFS (extended inter frame space). The IFSs provide priority levels for accessing the channel. The SIFS is the shortest of the inter frame spaces and is used after RTS, CTS, and DATA frames to give the highest priority to CTS, DATA, and ACK.

In figure, nodes in transmission range correctly set their NAVs when receiving RTS or CTS. However, since nodes in the carrier sensing zone cannot decode the packet, they do not know the duration of the packet transmission. To prevent a collision with the ACK reception at the source node, when nodes detect a transmission and cannot decode it, they set their NAVs for the EIFS duration. The main purpose of the EIFS is to provide enough time for a source node to receive the ACK frame, so the duration of EIFS is longer than that of an ACK transmission. As per IEEE 802.11, the EIFS is obtained using the SIFS, the DIFS, and the length of time to transmit an ACK frame at the physical layer’s lowest mandatory rate, as the following equation:

Figure 14. NAV duration in transmission range and carrier sensing zone

- **PCF Mechanism**

A PCF offers a guarantee of access to the medium for stations in a BS. This is beneficial for time-bound applications such as voice or video. A PCF consists of a point coordinator (PC) and stations that can respond to the contention free (CF) polling frame. The PC controls the access of the medium during the contention free period. Once polled, a station may transmit only one frame to any station.

Figure 15. PCF Scheme
VIII. BASIC POWER CONTROL PROTOCOL

Power control can reduce energy consumption. However, power control may introduce different transmit power levels at different hosts, creating an asymmetric situation where a node A can reach node B, but B cannot reach A.

Suppose that node A wants to send a packet to node B. Node A transmits the RTS at power level p_{max}. When B receives the RTS from A with signal level p_{r}, B can calculate the minimum necessary transmission power level, p_{desired}, for the DATA packet based on received power level p_{r}, the transmitted power level, p_{max}, and noise level at the receiver B.

We can borrow the procedure for estimating p_{desired} from. This procedure determines p_{desired} taking into account the current noise level at node B. Node B then specifies p_{desired} in its CTS to node A. After receiving CTS, node A sends DATA using power level p_{desired}. Since the signal-to-noise ratio at the receiver B is taken into consideration, this method can be accurate in estimating the appropriate transmit power level for DATA.

In the second alternative, when a destination node receives an RTS, it responds by sending a CTS as usual (at power level p_{max}). When the source node receives the CTS, it calculates p_{desired} based on received power level, p_{r}, and transmitted power level (p_{max}), as

$$P_{\text{desired}} = \frac{p_{\text{max}}}{p_{r}} \cdot \text{Rxthresh} \cdot c,$$

where Rxthresh is the minimum necessary received signal strength and c is a constant. We set c equal to 1 in our simulations. Then, the source transmits DATA using a power level equal to p_{desired}. Similarly, the transmit power for the ACK transmission is determined when the destination receives the RTS.

IX. DRAWBACK OF THE BASIC PROTOCOL

In the Basic scheme, RTS and CTS are sent using p_{max}, and DATA and ACK packets are sent using the minimum necessary power to reach the destination.

When the neighbour nodes receive an RTS or CTS, they set their NAVs for the duration of the DATA–ACK transmission. When D and E transmit the RTS and CTS, respectively, B and C receive the RTS, and F and G receive the CTS, so these nodes will defer their transmissions for the duration of the D–E transmission. Node A is in the carrier sensing zone of D (when D transmits at p_{max}) so it will only sense the signals and cannot decode the packets correctly. Node A will set its NAV for EIFS duration when it senses the RTS transmission from D. Similarly, node H will set its NAV for EIFS duration following CTS transmission from E.

When transmit power control is not used, the carrier sensing zone is the same for RTS–CTS and DATA–ACK since all packets are sent using the same power level. However, in Basic, when a source and destination pair decides to reduce the transmit power for DATA–ACK, the transmission range for DATA–ACK is smaller than that of RTS–CTS; similarly, the carrier sensing zone for DATA–ACK is also smaller than that of RTS–CTS.
Proposed power control MAC (PCM) is similar to the Basic scheme in that it uses power level \(p_{\text{max}} \) for RTS–CTS and the minimum necessary transmit power for DATA–ACK transmissions. We now describe the procedure used in PCM.

1. Source and destination nodes transmit the RTS and CTS using \(p_{\text{max}} \). Nodes in the carrier sensing zone set their NAVs for EIFS duration when they sense the signal and cannot decode it correctly.

2. The source node may transmit DATA using a lower power level, similar to the BASIC scheme.

3. To avoid a potential collision with the ACK (as discussed earlier), the source node transmits DATA at the power level \(p_{\text{max}} \), periodically, for just enough time so that nodes in the carrier sensing zone can sense it.

4. The destination node transmits an ACK using the minimum required power to reach the source node, similar to the BASIC scheme.

The main difference between PCM and the Basic scheme is that PCM periodically increases the transmit power to \(p_{\text{max}} \) during the DATA packet transmission. With this change, nodes that can potentially interfere with the reception of ACK at the sender will periodically sense the channel as busy, and defer their own transmission.

Accordingly, 15 \(\mu \)s should be adequate for carrier sensing, and time required to increase output power (power on) from 10% to 90% of maximum power (or power-down from 90% to 10% of maximum power) should be less than 2 \(\mu \)s. Thus, we believe 20 \(\mu \)s should be enough to power up (2 \(\mu \)s), sense the signal (15 \(\mu \)s), and power down (2 \(\mu \)s). In our simulation, EIFS duration is set to 212 \(\mu \)s using a 2 Mbps bit rate.

In PCM, a node transmits DATA at \(p_{\text{max}} \) every 190 \(\mu \)s for a 20\(\mu \)s duration. Thus, the interval between the transmissions at \(p_{\text{max}} \) is 210 \(\mu \)s, which is shorter than EIFS duration. A source node starts transmitting DATA at \(p_{\text{max}} \) for 20 \(\mu \)s and reduces the transmit power to a power level adequate for the given transmission for 190 \(\mu \)s. Then, it repeats this process during DATA transmission. The node also transmits DATA at \(p_{\text{max}} \) for the last 20 \(\mu \)s of the transmission.

With the above simple modification, PCM overcomes the problem of the BASIC scheme and can achieve efficiency comparable to 802.11, but uses less energy.

The proposed power control protocol is modified such that in this the Data and ACK is transmitted at lower power level but after a certain duration it is transmitted at higher power level for a very fraction of time, in order to make the neighboring nodes understand that transmission is going on and they should restrict their transmission during that period so that collision does not take place hence saving power consumption.
XI. Simulation Results

The given table shows all the different parameters taken into account for conducting the simulation in NS-2 atmosphere. In this table the values of all the different parameters are shown, using which the simulation for aggregate throughput and total data delivered per joule in accordance with Data rate per flow and Packet size is calculated for all three schemes namely; BASIC, 802.11 and Proposed protocol.

Table: Simulation Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of nodes</td>
<td>50</td>
</tr>
<tr>
<td>Simulation Area(m)</td>
<td>800x800</td>
</tr>
<tr>
<td>Topology</td>
<td>Random</td>
</tr>
<tr>
<td>Transmission range</td>
<td>50,100,150,200,250</td>
</tr>
<tr>
<td>Radio Propagation model</td>
<td>Shadowing</td>
</tr>
<tr>
<td>Traffic model</td>
<td>CBR, TCP</td>
</tr>
<tr>
<td>Packet Size</td>
<td>256,512,1024 bytes</td>
</tr>
<tr>
<td>Simulation times</td>
<td>150 seconds,300 seconds</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>2 Mbps</td>
</tr>
<tr>
<td>Routing</td>
<td>DSR</td>
</tr>
</tbody>
</table>

A. Simulation Result for Aggregate Throughput vs Data Rate Per Flow

B. Simulation Result for Aggregate Throughput vs Packet Size

C. Simulation Result for Data Delivered per Joule vs Data rate per flow

Figure 21. Flow Chart of Proposed Protocol
D. Simulation Result for Data Delivered per joule vs Packet Size

XII. CONCLUSION

It is shown that the Basic scheme increases collisions and retransmissions, which can result in more energy consumption and throughput degradation. Hence, the proposed protocol is more efficient than Basic scheme and 802.11 yielding better throughput and saves considerable amount of power as well. Hence the proposed protocol is optimized and conserves power, finally resulting in energy consumption.

XIII. SUGGESTION FOR FUTURE WORK

- We have shown the throughput of proposed protocol comparable to 802.11 with less power consumption, we can also try to increase the number of nodes in dynamic applications.
- In future the same power consumption scheme will also be conducted for grid topology.

One possible approach to the mobile ad hoc network power control scheme is that, it is only applied to the Random topology ad hoc scenario but it can also be made applicable for Grid Topology power control scheme without degrading the throughput. Where the nodes will be placed sequentially in a proper arranged manner.

XIV. REFERENCES

[15] Geetha Jayakumar and G Gopinath — Performance comparison of Two On-demand routing protocols for Ad-hoc Networks based on random way point mobility model. — Department of Computer Science, Bharathidasan University, Triuchirapalli- 620 023, India

Rahul Mukherjee: H.O.D. & Asst Prof. (EC-Deptt), St. Aloysius Institute of Technology (SAIT), Jabalpur, India. Pursuing P.hd in the field of Ad-hoc Networking. Published research papers in five international journals. Completed B.E.(EC) from RGPV, Bhopal. Pursued M.Tech in Communication Systems Engineering from KIIT University, Bhubaneswar. His field of interests includes Mobile Communication & Networking.