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Abstract— The purpose of this study was to improve the speech 

processing strategy for cochlear implants (CIs) A  speech  pre-

processing  algorithm  is  presented  to  improve  the speech 

intelligibility in noise. The algorithm improves the intelligibility by 

optimally redistributing the speech energy over time and frequency 

for a perceptual distortion measure, the algorithm is more 

sensitive to transient regions. Two objective intelligibility 

predictors  are applied before and after processing without 

modifying the global speech energy. Kalman filter is used to 

calculate estimated errors  
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1. INTRODUCTION  

 

COCHLEAR implant (CI) is an auditory neural prosthesis for 

restoring hearing function in patients with sensori neural hearing loss. 

Hearing restoration is achieved by electrically stimulating the 

auditory nerve, and the electrical stimulation pulse parameters are 

derived from incoming speech-by-speech processors contained 

within the CI devices. Essentially, the speech processing strategy of 

the CI mimics the basic function of the peripheral auditory system. 

Most modern devices utilize a filter bank for frequency 

decomposition of incoming speech, which is a simplification of the 

frequency decomposition function of a biological cochlea, i.e., the 

place coding (tonotopy) of auditory information. A simple linear 

band pass filter bank is used for most CI devices.  

 

 
Fig. 1 general structure of the speech processor in  a CI.  

 

The structure was originally motivated by the place cod- ing 

(tonotopy) of the basilar membrane . Incoming speech is first 

decomposed into multiple channels with different  

frequency ranges. The relative strengths of multiple channels are 

obtained from envelope detectors, and the envelopes of sub- bands 

are used to modulate the amplitudes of stimulus pulses 

To date, the performance of the CI has been significantly improved 

over time with the development of various speech processing 

strategies. Successful speech perceptions in quiet environments are 

possible for most recipients, but diminished CI performance occurs in 

noisy conditions. 

The major purpose of this study was to develop a novel speech 

processing strategy by a method where the speech energy is 

optimally re-distributed as a function of the near-end noise, relevant 

for a perceptual distortion measure and to improve the Intelligibility 

based on two objective intelligibility Methods the first method is the 

short-time objective intelligibility (STOI) measure [13] and the 

second measure is the coherence speech intelligibility index (CSII) 

.The estimation of the driving noise variance and of the additive 

noise variance are handled after a preliminary Kalman filtering 

 

2. SPEECH PRE-PROCESSING ALGORITHM 

Let   x  denote a time-domain  signal representing  clean  speech 

and x + ε a noisy version, where ε represents background 

noise.  The distortion measure considered in this work, denoted by 

D (x, ε), will inform us about the audibility of ε in the presence 

of x.  Hence, a lower D value implies less audible noise and 

therefore more audible speech. Our goal is to adjust the speech 

signal x such that D (x, ε) is minimized subject to the constraint 

that the energy of the modified speech remains unchanged. 

 

a) The  perceptual  distortion  measure   

The perceptual distortion measure is based on the work from 
[9],which takes into account a spectro-temporal auditory model and 
therefore also considers the temporal envelope within a short-
timeframe (20-40 ms), in contrast to spectral-only models. As a 
consequence, the distortion measure is more sensitive to transients, 
which are of importance for speech intelligibility. 
 

First, time-frequency (TF) decomposition is performed on the speech 
and noise by segmenting into short-time (32 ms), 50% overlapping 
hann-windowed frames. Then, a simple auditory model is applied to 
each short-time frame, which consists of an auditory filter bank 
followed by the absolute squared and low-pass filtering per band, in 
order to extract a temporal envelope. Here, the filter bank resembles 

the properties of the basilar membrane in the cochlea, whilethe 
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envelope extraction stage are used as a crude model of the 

hair-cell transduction in the auditory system. 

 

Let hi denote the impulse response of the ith auditory filter and 

xm the mth short-time frame of the clean speech. Their linear 

convolution is denoted by xi,m= xm*hi. Subsequently, the 

temporal envelope is defined by |xm,i|
2*hs, where hs represents the 

smoothing low-pass filter. Similar definitions hold for |εm,i|
2*hs. The 

cutoff frequency of the low-pass filter determines the sensitivity of 
the model towards temporal fluctuations within a short-time 

frame1.The audibility of the noise in presence of the speech, within 
one TF-unit, is determined by a per-sample noise-to-signal ratio. By 
summing these ratios over time, an intermediate distortion measure 
for one TF-unit is obtained denoted by lower-case d. That is, 
 

𝒅 𝒙𝒎,𝒊, ɛ𝒎,𝒊 =  
  𝜺𝒎,𝒊 

𝟐
∗𝒉𝒔  𝒏 

  𝒙𝒎,𝒊 
𝟐
∗𝒉𝒔  𝒏 

𝒏                          (1) 

 

where n denotes the time index running over all samples within one 
short-time frame. The distortion measure for the complete signal’s 
then obtained by summing all the individual distortion outcomes over 
time and frequency, which gives, 

 
𝑫 𝒙, 𝜺 =  𝒅 𝒙𝒎,𝒊, 𝝐𝒎,𝒊 𝒎,𝒊 .                      (2) 

 

Power-Constrained Speech-Audibility    Optimization 

 
To improve the speech audibility in noise, we minimize Eq. (2) by 
applying a gain function α which redistributes the speech energy 
Only TF-units are modified where speech is present. This is done in 

order to prevent that a large amount of energy would be redistributed 
to speech-absent regions. We consider a TF-unit to be speech-active, 
when its energy is within a 25dB range of the TF-unit with maximum 
energy within that particular frequency band. The noise is assumed to 
be a stochastic process denoted by εm,I and the speech deterministic 
(recall that the speech signal is known in the near-end enhancement 
application). Hence, we minimize for the expected value of the 
distortion measure. Let L denote the set of speech-active TF-units and 

||·||the l2-norm, the problem can then be formalized as follows,1the 
envelopes for the auditory filters with low center frequencies are 
already low-pass signals, therefore for complexity reasons these low-
pass filters may be discarded. 
 

𝒎𝒊𝒏∝𝒎,𝒊,{𝒎,𝒊}∈𝓛 𝑬 𝒅 𝜶𝒎,𝒊𝒙𝒎,𝒊,𝜺𝒎,𝒊   𝒔. 𝒕   𝜶𝒎,𝒊𝒙𝒎,𝒊 
𝟐

{𝒎,𝒊}∈𝓛{𝒎,𝒊}∈𝓛 =

= 𝒓     (3) 

 

Where      𝜶𝒎,𝒊𝒙𝒎,𝒊 
𝟐

{𝒎,𝒊}∈𝓛    relates to the power constraint. 

By using the method of Lagrange multipliers we introduce the 
following cost function, 

 

𝐽 =  𝑬 𝒅 𝜶𝒎,𝒊𝒙𝒎,𝒊,𝜺𝒎,𝒊  + 𝝀    𝜶𝒎,𝒊𝒙𝒎,𝒊 
𝟐

{𝒎,𝒊}∈𝓛 − 𝒓 {𝒎,𝒊}∈𝓛 (4) 

 

 

 

Due to the linearity of the convolution in Eq. (1), we have to solve 
the following set of equations for α for minimizing. (4), 

𝝏𝑱

𝝏𝜶𝒎,𝒊

=  −𝟐
𝑬 𝒅 𝒙𝒎,𝒊, 𝜺𝒎,𝒊  

𝜶𝒎,𝒊
𝟑 + 𝝀𝟐𝜶𝒎,𝒊 𝒙𝒎,𝒊 

𝟐
= 𝟎 

𝝏𝑱

𝝏𝝀
=   𝜶𝒎,𝒊

𝟐  𝒙𝒎,𝒊 
𝟐

{𝒎,𝒊}𝝐𝓛 − 𝒓 = 𝟎                                           (5) 

 

The solution is given by 

 

 

𝜶𝒎,𝒊
𝟐 =  

                𝒓𝜷𝒎,𝒊
𝟐

 𝜷
𝒎′ ,𝒊′
𝟐  𝒙𝒎′ ,𝒊′

 
𝟐

 𝒎′ ,𝒊′  𝝐𝓛

                                              (6) 

 

 

where, 

 

𝜷𝒎,𝒊 =  
 𝑬[𝒅(𝒙𝒎,𝒊,𝜺𝒎,𝒊 ]

 𝒙𝒎,𝒊 
𝟐  

𝟏 𝟒 

                        .                    (7) 

 

In order to determine α we have to evaluate the expected value 
E [d (xm,i, εm,i)], which can be expressed as follows, 
 

𝑬 𝒅 𝒙𝒎,𝒊,𝜺𝒎,𝒊  =   
 𝑬[ 𝜺𝒎,𝒊 

𝟐
∗𝒉𝒔  𝒏 

  𝒙𝒎,𝒊 
𝟐
∗𝒉𝒔  𝒏 

𝒏                              , (8) 

 

As a final step, an exponential smoother is applied to αm,I  in order to prevent 

’musical noise’ which may negatively affect the speech quality2, 

 

 

𝜶ˆ𝒎,𝒊 =  𝟏 − 𝜸 𝜶𝒎,𝒊 + 𝜸𝜶ˆ𝒎−𝟏,𝒊                                         (10) 

Where =0.9. 

 

To reduce complexity, the filter bank and the low-pass filter are 
applied by means of a point-wise multiplication in the DFT-domain 
with real-valued, even-symmetric frequency responses3. For the filter 
bank the approach as presented in is used and for the low-pass filter 
the magnitude response of a one-pole low-pass filters used. A total 
amount of 40 ERB-spaced filters are considered between 150 and 
5000 Hz. Furthermore, the speech signal is reconstructed by addition 

of the scaled TF-units where a square-root Hann-window is used for 
analysis/synthesis. 
 
 

3 METHODS FOR SPEECH INTELLIGIBILITY PREDICTION 

 

Existing objective speech-intelligibility measures are suitable for 
several types of degradation, however, it turns out that they are less 
appropriate for methods where noisy speech is processed by a time 
frequency (TF) weighting, e.g., noise reduction and speech 
separation. IN this paper, we present an objective intelligibility 
measure, which shows high correlation (rho=0.95) with the 
intelligibility of both noisy, and TF-weighted noisy speech.  

The proposed method shows significantly better 
performance than three other, more sophisticated, objective measures. 
Furthermore, it is based on an intermediate intelligibility measure for 
short-time (approximately 400ms) TF-regions, and uses a simple 
DFT-based TF-decomposition. 

Two objective intelligibility predictors are applied before 
and after processing. The first method is the short-time objective 
intelligibility (STOI) measure and the second measure is the 

coherence speech intelligibility index (CSII). 
 

4 SHORT-TIME OBJECTIVE INTELLIGIBILITY (STOI) 

One of the first OIMs was developed at AT&T Bell Labs 
by French and Steinberg in 1947 1, currently known as the 
articulation index (AI). AI evolved to the speech-intelligibility index 
(SII), and has been standardized in 1997 under ANSI 3.5-1997 .Later, 

the speech transmission index (STI) was proposed, which ,in contrast 
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to AI, is also able to predict the intelligibility of various simple 
nonlinear degradations, e.g. clipping.  

The majority of recent published models are still based on 
the fundamentals of AI,  and STI (see for an overview of STI-based 
measures).Although the just mentioned OIMs are suitable for several 

types of degradation (e.g., additive noise, reverberation, filtering, 
clipping),it turns out that they are less appropriate for methods where 
noisy speech is processed by a time-frequency (TF) weighting.  
This includes single-microphone speech-enhancement algorithms but 
also speech separation techniques like ideal time frequency 
segregation (ITFS) , where typically a binary TF-weighting is used 
STI and various STI-based measures predict an intelligibility 
improvement when spectral subtraction is applied. This is not in line 

with the results of listening experiments in literature, where it is 
reported that general single-microphone 

Speech-enhancement algorithms are not able to improve 
the intelligibility 
of noisy speech. Furthermore, OIMs like the coherence SII [5] and a 
covariance-based STI procedure, both show low correlation with the 
intelligibility of ITFS-processed speech. Only recently, two different 
OIMs are proposed which indicate promising results for ITFS-

processed speech 
Existing objective speech-intelligibility measures are 

suitable for several types of degradation, however, it turns out that 
they are less appropriate for methods where noisy speech is processed 
by a time frequency (TF) weighting, e.g., noise reduction and speech 
separation. 

To analyze the effect of certain signal degradations on the 
speech-intelligibility in more detail, the OIM must be of a simple 

structure, i.e., transparent. However, some OIMs are based on a large 
amount of parameters which are extensively trained for a certain 
dataset. This makes these measures less transparent, and therefore 
less appropriate for these evaluative purposes. Moreover, OIM’ s are 
often a function of long-term statistics of entire speech signals and do 
not use an intermediate measure for local short-time TF regions .With 
these measures it is difficult to see the effect of a time-frequency 
localized signal-degradation on the speech intelligibility 

In this method, we present an objective intelligibility 

measure, which shows high correlation (rho=0.95) with the 
intelligibility of both noisy, and TF-weighted noisy speech. The 
proposed method shows significantly better performance than three 
other, more sophisticated, objective measures. Furthermore, it is 
based on an intermediate intelligibility measure for short-time 
(approximately 400 ms) TF-regions, and uses a simple DFT-based 
TF-decomposition. 

The proposed method is a function of the clean and 

processed speech, denoted by x and y, respectively. The model is 
designed for a sample-rate of 10000 Hz, in order to cover the relevant 
frequency range for speech-intelligibility. Any signals at other 
sample-rates should be resampled. Furthermore, it is assumed that the 
clean and the processed signal are both time-aligned. 

First, a TF-representation is obtained by segmenting both 
signals into 50%overlapping, Hanning-windowed frames with a 
length of 256 samples, where each frame is zero-padded up to 512 

samples and Fourier transformed. Then, an one-third octave band 
analysis is performed by grouping DFT-bins. In total 15 one-third 
octave bands are used, where the lowest center frequency is set equal 
to 150Hz. 

 

 

 

 

  

Fig 2  STOI process schematic representation 
 

 

 

Let ˆx (k, m) denote the kth DFT-bin of the mth frame of the clean 

speech. The norm of the jth one-third octave band, referred to as a 
 

𝑋𝑗  𝑚 =    𝑥ˆ 𝑘,𝑚  2
𝑘2 𝑗  −1

𝑘=𝑘1 𝑗  
                                                (11) 

 

Where k1 and k2 denote the one-third octave band edges, which 

are rounded to the nearest DFT-bin. The TF-representation of the processed 

speech is obtained similarly, and will be denoted by 𝑌𝑗  𝑚 .The intermediate 

intelligibility measure for one TF-unit, say𝑑𝑗  𝑚 , depends on a region of N 

consecutive TF-units from both  

𝑋𝑗  𝑛  𝑎𝑛𝑑 𝑌𝑗  𝑛 , where n∈M and={(m−N+1) , (m−N+2) , ...,m−1,m}. First, 

a local normalization procedure is applied, by scaling all the TF-units from 

𝑌𝑗  𝑛  with a factor  

 

𝛼 =   𝑋𝑗  𝑛 
2

𝑛

 𝑌𝑗  𝑛 
2

𝑛

  

1 2 

 

Such that its energy equals the clean speech energy, within that TF-region. 

Then, αYj (n) is clipped in order to lower bound the Signal-to-distortion ratio 

(SDR), which we define as, 

𝑺𝑫𝑹𝒋 𝒏 = 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎  
𝑿𝒋 𝒏 

𝟐

 𝜶𝒀𝒋 𝒏 −𝑿𝒋 𝒏  
𝟐                                 (12) 

 

Hence 

 

𝒀′ = 𝐦𝐚𝐱(𝐦𝐢𝐧 𝜶𝒀,𝑿 + 𝟏𝟎−𝜷 𝟐𝟎 𝑿 ,𝑿 − 𝟏𝟎−𝜷 𝟐𝟎 𝑿)                 (13) 

 

Where Y’ represents the normalized and clipped TF-unit and β 
denotes The lower SDR bound. The frame and one-third octave band 
indices are omitted for notational convenience. The intermediate 
intelligibility measure is defined as an estimate of the linear 
correlation coefficient between the clean and modified processed TF-
units, 

𝒅𝒋 𝒎 =  

  𝑿𝒋 𝒏 −  
𝟏
𝑵
 𝑿𝒋𝒊  𝒍  𝒏  𝒀′ 𝒏 −  

𝟏
𝑵
 𝒀𝒋

′
𝒊  𝒍  

   𝑿𝒋 𝒏 −
𝟏
𝑵
 𝑿𝒋𝒊  𝒍  

𝟐

𝒏   𝒀′ 𝒏 −  
𝟏
𝑵
 𝒀𝒋

′
𝒊  𝒍  

𝟐
             (𝟏𝟒) 
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Where l ∈ M. Finally, the eventual OIM is simply given by 

the average of the intermediate intelligibility measure over all bands 
and frames, 

 

𝑑 =
1

𝐽𝑀
 𝑑𝑗  𝑚 

𝑗 ,𝑚

                                                                                        (15) 

 

Where M represents the total number of frames and J the 
number of One-third octave bands. In our experiments, we used 
different values of N∈[20, 30, 40,50, 60] and β∈[-∞ , -30, -20, -15, -

10] 1. Maximum correlation is obtained with β=-15 and N=30, which 

means that the intermediate measure depends on speech information 
from the last ≈400 ms 
 

5 COHERENCE SPEECH INTELLIGIBILITY INDEX (CSII) 

Other extensions to the SII measure were proposed by 
Kates and Arehart(2005) for predicting the intelligibility of peak-
clipping and center-clipping distortions in the speech signal, such as 
those found in hearing aids. The modified index, called the CSII 
index, used the base form of the SII procedure, but with the SNR 
estimate replaced by the signal to-distortion ratio, which was 
computed using the coherence function between the input and 
processed signals. 

 While a modest correlation was obtained with the CSII 
index, a different version was proposed that divided the speech 
segments into three level regions and computed the CSII index 
separately for each level region. The three-level CSII index yielded 
higher correlations for both intelligibility and subjective quality 
ratings of hearing-aid type of distortions. Further testing of the CSII 
index is performed in the present study to examine whether it can be 
used to predict the intelligibility of speech corrupted by fluctuating 
maskers and 2 to predict the intelligibility of noise suppressed speech 

containing different types of non-linear distortions than those 
introduced by hearing aids. 

The STI measure by (Steeneken and Houtgast, 1980)is 
based on the idea that the reduction in intelligibility caused by 
additive noise or reverberation distortions can be modeled in terms of 
the reduction in temporal envelope modulations. 
The STI metric has been shown to predict successfully the effects of 
reverberation, room acoustics, and additive noise. It has also been 

validated in several languages. In its original form the STI measure 
used artificial signals _e.g., sine wave(modulated signals) as probe 
signals to assess the reduction in signal modulation in a number of 
frequency bands and for a range of modulation frequencies _0.6–12.5 
Hz_ known to be important for speech intelligibility. When speech is 
subjected, however, to non-linear processes such as those introduced 
by dynamic envelope compression _or expansion_ in hearing aids, 
the STI measure fails to successfully predict speech intelligibility 

since the processing itself might introduce additional modulations 
which the STI measure interprets as increased SNR  

For that reason, several modifications have been proposed 
to use speech or speech-like signals as probe signals in the 
computation of the STI measure. Despite of these modifications, 
several studies have reported that the speech-based STI methods fail 
to predict the intelligibility of nonlinearly-processed speech .several 
modifications were made to existing speech-based STI measures but 

none of these modifications were validated with intelligibility scores 
obtained with human 
listeners. 

The SII and speech-based STI measures can account for 
linear distortions introduced by filtering and additive noise, but have 
not been tested extensively in conditions where in non-linear 
distortions might be present 

The increased modulation might be interpreted as increased 
SNR by the STI measure. Hence, it remains unclear whether the 
speech-based STI measures or the 
SII measure can account for the type of distortions introduced by 
noise-suppression algorithms and to what degree they can predict 

speech intelligibility. It is also not known whether any of the 
numerous objective measures that have been proposed to predict 
speech quality invoice communications applications can be used to 
predict speech intelligibility. 

An objective measure that would predict well both speech 
intelligibility and quality would be highly desirable in voice 
communication and hearing-aid applications. 

The objective quality measures are primarily based on the 

idea that speech quality can be modeled in terms of differences in 
loudness between the original and processed signals 

The perceptual evaluation of speech quality (PESQ) 
objective measure, for instance, assesses speech quality by estimating 
the overall loudness difference between the noise-free and processed 
signals. This measure has been found to predict very reliably _ the 
quality of telephone networks and speech codec’s as well 
as the quality of noise-suppressed speech. Only a few studies have 

tested the PESQ measure in the context of predicting speech 
intelligibility. High correlation was reported, but it was for a 
relatively small number of noisy conditions which included speech 
processed via low-rate vocoders and speech processed binaurally via 
beam forming algorithms. The speech distortions introduced by 
noise-suppression algorithms (based on single-microphone 
recordings) differ, however, from those introduced by low-rate 
vocoders. Hence, it is not known whether the PESQ measure can 

predict reliably the intelligibility of noise-suppressed speech 
containing various forms of Non-linear distortions, such as musical 
noise. 

 

OBJECTIVE MEASURES 
A number of objective measures are examined in the 

present study for predicting the intelligibility of speech in noisy 
conditions. Some of the objective measures (PESQ) have been used 
successfully for the evaluation of speech quality  

while others are more appropriate for intelligibility assessment. A 
description of these measures along with the proposed modifications 
to speech-based STI and AI-based measures is given next. 

 
 
THE PERCEPTUAL EVALUATION OF SPEECH QUALITY (PESQ) 

 

Among all objective measures considered, the PESQ 
measure is the most complex to compute and is the one 
recommended by for speech quality assessment 
of 3.2 kHz _narrow-band_ handset telephony and narrow-band 
speech codec’s The PESQ measure is computed as follows. The 
original (clean) and degraded signals are first level equalized to a 

standard listening level and filtered by a filter with response similar 
to that of a standard telephone handset. The signals are time aligned 
to correct for time delays, and then processed through an auditory 
transform to obtain the loudness spectra. The difference in loudness 
between the original and degraded signals is computed and averaged 
over time and frequency to produce the prediction of subjective 
quality rating. The PESQ produces a score between 1.0 and 4.5, with 
high values indicating better quality. High correlations 

(r=0.92) with subjective listening tests were reported by using the 
above PESQ measure for a large number of testing conditions taken 
from voice-over-internet protocol applications. High correlation 
(r=0.9) was also reported 
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AI-BASED MEASURES 

 

A simplified version of the SII measure is considered in 
this study that operates on a frame-by-frame basis. The proposed 
measure differs from the traditional SII measure in many ways: 
(a)It does not require as input the listener’s threshold of hearing,  
 (b)Does not account for spread of upward masking,  
 (c)Does not require as input the long-term average spectrum(sound-
pressure)levels of the speech and masker signals.  

The proposed AI-ST measure divides the signal into short 
_30 ms_ data segments, computes the AI value for each segment, and 
averages the segmental 
AI values over all frames. It can be computed as follows 
 

𝑨𝑰− 𝑺𝑻 =
𝟏

𝑴
 

 𝑾 𝒋,𝒎 𝑻 𝒋,𝒎 𝒌
𝒋=𝟏

 𝑾 𝒋,𝒎 𝑲
𝒋=𝟏

𝑴−𝟏
𝑴=𝟎                                               (16) 

 
Where M is the total number of data segments in the signal, W(j ,m) 
is the weight i.e., band importance function, placed on the jth 
frequency band, and 

𝑻 𝒋,𝒎 =
𝑺𝑵𝑹 𝒋,𝒎 + 𝟏𝟓

𝟑𝟎
 

 

𝑺𝑵𝑹 𝒋,𝒎 = 𝟏𝟎𝐥𝐨𝐠𝟏𝟎
𝑿ˆ 𝒋,𝒎 𝟐

𝑫 𝒋,𝒎 𝟐
                                                     (17) 

 

 

COHERENCE-BASED MEASURES 

 

The aim of the METHOD is to evaluate the performance of new 

speech-based STI measures, modified coherence-based measures, the 

modified Coherence-based measures and speech-based STI measures 

incorporating signal-specific band-importance functions yielded the highest 

correlations (r=0.89–0.94). The modified coherence measure, in particular, 

that only included vowel/consonant transitions and weak consonant 

information yielded the highest correlation (r=0.94)with sentence recognition 

scores.  

To evaluate the performance of conventional objective measures 

originally designed to predict speech quality and to evaluate the performance 

of new speech-based STI measures, modified coherence-based measures 

(CSII), as well as AI-based measures that were designed to operate on short-

term (20–30) ms intervals in realistic noisy conditions. A number of 

modifications to the speech-based STI, coherence-based, and AI 

measures are proposed and evaluated in this study. 

The articulation index AI and speech-transmission index (STI) are by far 

the most commonly used today for predicting speech intelligibility in noisy 

conditions. The AI measure was further refined to produce the speech 

intelligibility index (SII).  

The SII measure is based on the idea that the intelligibility of 

speech depends on the proportion of spectral information that is audible to the 

listener and is computed by dividing the spectrum into 20 bands 

 

 
 

Fig 3 CSII schematic representation 

 

The magnitude-squared coherence (MSC) function is the 

normalized cross-spectral density of two signals and has-been used to assess 

distortion in hearing aids .It is computed by dividing the input (clean) and 

output(processed) signals in a number _M_ of overlapping windowed 

segments, computing the cross power spectrum for each segment using the 

FFT, and then averaging across all segments. 

For M data segments (frames), the MSC at frequency bin ὠ is given by 

 

𝑴𝑺𝑪 𝝎 =
  𝑿𝒎

𝑴
𝒎=𝟏  𝝎 𝒀𝒎

∗  𝝎  
𝟐

  𝑿𝒎 𝝎  
𝟐𝑴

𝒎=𝟏   𝒀𝒎 𝝎  
𝟐𝑴

𝒎=𝟏

                                            (18) 

 

Where the asterisk denotes the complex conjugate and Xm (ὠ) and 
Ym (ὠ) denote 
the FFT spectra of the x(t) and y(t)signals, respectively, computed in 
the mth data segment. In our case, x(t) corresponds to the clean signal 
and y(t) corresponds to the enhanced signal. The MSC measure takes 

values in the range of 0–1. The averaged, across all frequency bins, 
MSC was used in our study as the objective measure. 
The MSC was computed by segmenting the sentences using30-ms 
duration Hamming windows with 75% overlap between adjacent 
frames. The use of a large frame overlap (50%) was found to reduce 
bias and variance in the estimate of the MSC. It should be noted that 
the above MSC function can be expressed as a weighted  

The main difference between the MTF used in the 
computation of the STI measure and the MSC function is that the 

latter function is evaluated for all frequencies spanning the signal 
bandwidth, while the MTF is evaluated only for low modulation 
frequencies 

The new measure, called coherence SII (CSII), was 
proposed that used the SII index as the base measure and replaced the 
SNR term with the signal-to-distortion ratio term, which was 
computed using the coherence between the input and output signals. 
That is, the SNR(j,m) term in Eq(3)was replaced with the following 

expression  
 

𝑺𝑵𝑹𝑪𝑺𝑰𝑰 𝒋,𝒎 = 10𝒍𝒐𝒈𝟏𝟎
 𝑮𝒋 𝝎𝒌 ∗𝑴𝑺𝑪 𝝎𝒌  𝒀𝒎 𝝎𝒌  

𝟐𝑵
𝒌=𝟏

 𝑮𝒋 𝝎𝒌 ∗[𝟏−𝑴𝑺𝑪 𝝎𝒌 ] 𝒀𝒎 𝝎𝒌  
𝟐𝑵

𝒌=𝟏

               (19)  

 

CSII=
𝟏

𝑴
 

 𝑾(𝒋,𝒎)𝑻𝑪𝑺𝑰𝑰(𝒋,𝒎)𝒌
𝒋=𝟏

 𝑾(𝒋,𝒎)𝑲
𝒋=𝟏

                                                        (𝟐𝟎)𝑴−𝟏
𝑴=𝟎  

 

 

CALICULATION OF ESTIMATED ERROR  

 

In 1960, R.E. Kalman published his famous paper 
describing a recursive solution to the discrete-data linear filtering 

problem. Since that time, the Kalman filter has been the subject of 
extensive research and application, particularly in the area of 
autonomous or assisted navigation.  

The Kalman filter is a mathematical power tool that is 
playing an increasingly important role in computer graphics as we 
include sensing of the real world in our systems. 

Although, the applications of Kalman filtering encompass 
many fields, its use as a tool is mainly for two purposes: estimation 

and performance analysis of estimators. Since the Kalman filter uses 
a complete description of the probability of its estimation errors in 
determining the optimal filtering gains 

 
6 KALMAN FILTER 

 
 Theoretically, the Kalman Filter is an estimator for what is 
called the “linear quadratic problem”, which focuses on estimating 
the instantaneous ―state‖ of a linear dynamic system perturbed by 

white noise. Statistically, this estimator is optimal with respect to any 
quadratic function of estimation errors. 

 In practice, this Kalman Filter is one of the greater 
discoveries in the history of statistical estimation theory and possibly 
the greatest discovery in the twentieth century. It has enabled 
mankind to do many things that could not have been done without it, 



International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) 

Volume 3, Issue 3, March 2014 

ISSN: 2278 – 909X                                        All Rights Reserved © 2014 IJARECE    287 

 

and it has become as indispensable as silicon in the makeup of many 
electronic systems 

In a more dynamic approach, controlling of complex 
dynamic systems such as continuous manufacturing processes, 
aircraft, ships or spacecraft, are the most immediate applications of 

Kalman filter. In order to control a dynamic system, one needs to 
know what it is doing first. For these applications, it is not always 
possible or desirable to measure every variable that you want to 
control, and the Kalman filter provides a means for inferring the 
missing information from indirect (and noisy) measurements. Some 
amazing things that the Kalman filter can do is predicting the likely 
future courses of dynamic systems that people are not likely to 
control, such as the flow of rivers during flood, the trajectories of 

celestial bodies or the prices of traded commodities. From a practical 
standpoint, these are the perspectives that this section will present: 

It aids mankind in solving problems; however, it does not 
solve any problem all by itself. This is however not a physical tool, 
but a mathematical one, which is made from mathematical models. In 
short, essentially tools for the mind. They help mental work become 
more efficient, just like mechanical tools, which make physical work 
less tedious. Additionally, it is important to understand its use and 

function before one can apply it effectively. 
It uses a finite representation of the estimation problem, 

which is a finite number of variables; therefore this is the reason why 
it is said to be ―ideally suited to digital computer implementation‖ . 
However, assuming that these variables are real numbers with infinite 
precision, some problems do happen. This is due from the distinction 
between finite dimension and finite information, and the distinction 
between ―finite‖ and ―manageable‖ problem sizes. On the practical 

side when using Kalman filtering, the above issues must be 
considered along with the theory. 
 This is a complete characterization of the current state of 
knowledge of the dynamic system, including the influence of all past 
measurements. The reason behind why it is much more than an 
estimator is because it propagates the entire probability distribution 
of the variables it is tasked to estimate. These probability 
distributions are also useful for statistical analyses and the predictive 
design of sensor systems. 

The estimation problem is modeled in a way that 
distinguishes between phenomena (what one is able to observe) and 
noumena (what is really going on). Above that, the state of 
knowledge about the noumenais that one can deduce from the 
phenomena. That state of knowledge is represented by probability 
distributions, which represent knowledge of the real world. Thus this 
cumulative processing of knowledge is considered a learning process. 
It is a fairly simple process, however quite effective in many 

applications. Probability distribution may be used in assessing its 
performance as a function of the ―design parameters‖ of the 
following estimation systems: 

 Types of sensors to be used; 
  Locations and orientations of the various sensor types with 

respect to the system to be estimated; 
  Allowable noise characteristics of the sensors; 
  Pre-filtering methods for smoothing sensor noise; 

  Data sampling rates for the various sensor types and 
  The level of model simplification for reducing 

implementation requirements. 
A system designer is able to assign an ―error budget‖ to 

subsystems of an estimation system, which this is allowed by the 
analytical capability of the Kalman filter formalism. Moreover, it can 
trade off the budget allocations to optimize cost or other measures of 
performance while achieving a required level of estimation accuracy. 

 

 

RELATIVE ADVANTAGES OF KALMAN FILTER 
 

Below are some advantages of the Kalman filter, comparing 
with another famous filter known as the Wiener Filter, which this 
filter was popular before the introduction of Kalman filter. The 

information below is obtained from. 
1.  The Kalman filter algorithm is implementable on a digital 

computer, which this was replaced by analog circuitry for 
estimation and control when Kalman filter was first 
introduced. This implementation may be slower compared 
to analog filters of Wiener; however it is capable of much 
greater accuracy. 

2.  Stationary properties of the Kalman filter are not required 

for the deterministic dynamics or random processes. Many 
applications of importance include non-stationary 
stochastic processes. 

3.  The Kalman filter is compatible with state-space 
formulation of optimal controllers for dynamic systems. It 
proves useful towards the 2 properties of estimation and 
control for these systems. 

4.  The Kalman filter requires less additional mathematical 

preparation to learn for the modern control engineering 
student, compared to the Wiener filter. 

5.  Necessary information for mathematically sound, 
statistically-based decision methods for detecting and 
rejecting anomalous measurements are provided through 
the use of Kalman filter. 
 
 

ESTIMATION OF PROCESS 
 

After going through some of the introduction and 
advantages of using Kalman filter, we will now take a look at the 
process of this magnificent filter. The process commences with the 
addresses of a general problem of trying to estimate the state of a 
discrete-time controlled process that is governed by a linear 
stochastic difference equation: 

 

𝑿𝒌 = 𝑨𝒙𝒌−𝟏 +𝑩 𝒖𝒌 + 𝒘𝒌−𝟏                                             (21) 

 
with a measurement𝒁𝒙  ∈  𝑨𝒎that is 

𝒁𝒌 = 𝑯𝑿𝑲 + 𝑽𝑲                                                                             (22) 
       The random variables𝒘𝑲,𝒗𝒌 and represent the process and 

measurement noise (respectively). We assume that they are 
independent of each other, white, and with normal probability 
distributions 
 

𝐏  𝐰 ≅  𝐍  𝐎,𝐐                                  (23) 

 

𝐏  𝐯   ≅  𝐍  𝐎,𝐑                                                                            (24) 

 
 

 Ideally, the process noise covariance Q and measurement 
noise covariance R matrices are assumed to be constant, however in 

practice, they might change with each time step or measurement. 
 In the absence of either a driving function or process noise, 

the n×n matrix A in the difference Equation (21) relates the state at 
the previous time step k-1 to the state at the current step k. In 
practice, A might change with each time step, however here it is 
assumed constant. The n×l matrix B relates the optional control input 

u∈ ℜ^to the state x. H which is a matrix in the measurement 

Equation (22) which relates the state to the measurement, zk.  In 
practice H might change with each time step or measurement, 
however we assume it is constant. 
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IMPLEMENTATION OF KALMAN FILTER TO SPEECH 

 

  

From a statistical point of view, many signals such as 
speech exhibit large amounts of correlation. From the perspective of 
coding or filtering, this correlation can be put to good use. The all 
pole, or autoregressive (AR), signal model is often used for speech. 
From Crisafulliet al, the AR signal model is introduced as: 
 

𝒀𝒌 =  
𝟏

𝟏− 𝒂𝒊𝒛
−𝒊𝑵

𝒊−𝟏
                                                                               (25)    

 

Equation (5.1) can also be written in this form as shown below: 

𝒚𝒌 =  𝒂𝟏𝒚𝒌−𝟏 + 𝒂𝟐𝒚𝒌−𝟐 + ---------- + 𝒂𝑵𝒚𝒌−𝒏 + 𝒘𝒌                        (26) 

 

 

where, 

 

k→ Number of iterations;  

yk → current input speech signal sample; 

yk–N→ (N-1)th sample of speech signal; 

aN → Nth Kalman filter coefficient; and  
wk → excitation sequence (white noise). 

 

In order to apply Kalman filtering to the speech expression 

shown above, it must be expressed in state space form as 

 

𝑲𝒌 = 𝑷𝒌−𝟏𝑯𝒌−𝟏 [𝑯𝒌−𝟏
𝑻 𝑷𝒌−𝟏𝑯𝒌−𝟏 +𝑹]−𝟏.𝑯𝒌−𝟏

𝑻 𝑷𝒌−𝟏𝑯𝒌−𝟏 +𝑸 

 
 

Where 𝑷𝒌 is the posteriori error covariance matrix? 

And  

Q=

 

 
 

𝟏 𝟎……   𝟎 𝟎
𝟎 𝟏……   𝟎 𝟎
⋮ ⋮  … …  ⋮  ⋮
𝟎 𝟎……  𝟏 𝟎 
𝟎 𝟎……𝟎 𝟏  

 
 

 

 
 

Thereafter the reconstructed speech signal, Yk after Kalman filtering 
will be formed in a manner similar to Eq (22): 

 
𝒚𝒌 =  𝒂𝟏𝒚𝒌−𝟏 + 𝒂𝟐𝒚𝒌−𝟐 + ---------- + 𝒂𝑵𝒚𝒌−𝒏 + 𝒘𝒌                   (𝟐𝟕) 

 

After the calculation of gain in the form of estimated error we are 

eliminating to find the improved speech for the speech processing 

of cochlear implant patients 
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Fig 4    STOI intelligibility p r e d i c t i o n s  for  the proposed 

method (PROP), the unprocessed n o i s y  speech (UN), 

 
EXPERIMENTAL EVALUATION 

 
To evaluate  the performance  of the proposed  (PROP)  method 

and compare it to several  reference  methods,  speech is 

degraded with babble, F16, factory and white noise for an SNR-

range between -15 and 5 dB. In total, 50 random sentences from 

a female speaker are used from the Dutch matrix test .  For all 

experiments a sample rate of 16000 Hz is used. A comparison is 

made with two other algorithms. That is, the method of maximal 

power transfer proposed by Sauert et. al (SAU) which applies a 

TF-dependent gain function and takes  into account  the noise.   

Secondly,  our results  are com- pared with the method from 

which modifies the vowel-transient ratio. In our experiments, the 

energy is redistributed for a complete sentence at once (around 3 

seconds).  Applications for this situation would be when the speech 

is pre-recorded in environments where the noise is known, e.g., 

navigation voice in a car or safety announcements in an airplane.  

Note, that the delay of the proposed method can be reduced by 

restricting the amount of TF-units in L taken into account from the 

past. In near future research we will evaluate low-delay 

performance of the algorithm. 

Two objective  intelligibility  predictors  are applied  before  and 

after processing.  The first method is the short-time objective 

intel- ligibility (STOI) measure [13] and the second measure is 

the coher- ence speech intelligibility index (CSII) 

 

 

 

 

 

FIG 5      CSII  INTELLIGIBILITY  PREDICTIONS  FOR  THE  PROPOSED  

METHOD (PROP),  THE  UNPROCESSED  NOISY  SPEECH  (UN) 

 

both measures can predict the  intelligibility  of noisy speech and 
various nonlinear speech degradations. the results are shown in figs. 
4 and 5, where the plots show that for all noise types a significant 
intelligibility improvement is predicted.  a conclusion which is in 
line with informal listening tests.  the proposed method shows b 
the reference methods for all noise types. 

 

 

conclusion 

 

A speech processing strategy required for bionic ear 

(cochlea implant) to receive all types of audio signals for a 

hearing impairment patient. To improve the speech processing 
in noise, a filter bank contains band pass filters are taken. But 

diminished performance occurs in noise condition because of 

change in signal strength 

 

A speech processing algorithm is presented to 

improve speech intelligibility accomplished by optimally 

redistributing the speech energy over time and frequency 

based on a perceptual distortion measure. Speech processing 

algorithm is more sensitive to transient regions, which will 

therefore receive more amplification compared to stationary 

vowels.  
From the results we can observe the input signal with noise in 

both time domain and frequency domain. 
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We can observe the intelligibility of signal in two methods 

Objective intelligibility prediction method of Coherence 

speech intelligibility index (CSII) and short time objective 

intelligibility (STOI) results that the SNR can be lowered 3-5 

dBs without losing intelligibility. By using the proposed 

method, we are achieving the high speech intelligibility in 
noise environment. The proposed algorithm is applicable to 

both processed and un processed speech signals 
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