
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 8, August 2014

806

ISSN: 2278 – 909X All Rights Reserved © 2014 IJARECE

Abstract— More than 70 ECUs are implemented in cars, and

the number is still increasing. As a result, the complexity of

automotive networks and cabling is extensive. In order to

reduce the amount of wiring and diagnose wiring faults, the

CAN bus may be used in vehicles to connect different

ECUs.The main aim of the project is to simulate a working

hardware model of a Vehicle monitoring System indicating

temperature and fuel status via CAN protocol. The

communication between two nodes i.e. the transmitter and the

receiver is via CAN protocol. The Transmitter node controller

is programmed to input the parameter values (Temperature,

Pressure etc.) and the receiver node controller will in turn

control the output actuators such as Displays. The sender

microcontroller reads the two analog values and sends it to the

receiver end displaying the status in the LCD, hence

successfully implementing the CAN protocol.

Index Terms—CAN, LCD, Sensor, Temperature.

I. INTRODUCTION

 CAN bus (for controller area network) is a vehicle bus

standard designed to allow microcontrollers and devices to

communicate with each other within a vehicle without a host

computer. CAN bus is a message-based protocol, designed

specifically for automotive applications but now also used in

other areas such as aerospace, maritime, industrial

automation and medical equipment.[1] [5]

Development of the CAN bus started originally in 1983

at Robert Bosch GmbH and was officially released in 1986 at

the Society of Automotive Engineers (SAE). CAN bus is one

of the five protocols used in On-board diagnostics (OBD-II)

vehicle diagnostic standard. This standard has been

mandatory for all cars and light trucks sold in the United

Sates since 1996. CAN specification 2.0 describes the base

frame format (using 11-bit CAN identifier) and the extended

frame format (using 29-bit CAN Identifier). [4]

The complexity of automotive networks and cabling is

extensive. [2] We need to find ways to reduce the amount of

wiring and diagnose wiring faults. The CAN bus may be used

in vehicles to connect different ECUs such as engine, climate

control, ABS (Anti-Lock Braking System), etc. Bus

Manuscript received July 2014

Swathi Tangi Electrical & Electronics, Manipal Institute of Technology,.

Manipal, India, Ph: +919538410461.

 Anshuman Kumar, Electrical & Electronics, Manipal Institute of

Technology, Manipal, India, Ph: +919916881678

Chinmay Khandalkar, Electrical & Electronics, Manipal Institute of

Technology, Manipal, India, Ph: +917795026512

architecture is one of the ways to keep the volume of cabling

from becoming unmanageable. CAN protocol was

Fig1: Wiring simplifications via CAN Bus

implemented using two nodes. The sender node was set with

the analog values of temperature and fuel. These values were

converted to digital by the sender microcontroller ADC and

sent to the receiver node via the CAN bus setup by the

transceivers. The receiver node compared these digital values

and accordingly sent the control signals to the LCD and the

LED’s.

II. CAN HARDWARE

A. Building Blocks

1) Line ending is used to prevent interference in a bus

topology. Waves that reach the end of an open line can be

reflected back and cause interference with the actual signal or

even cancel it completely. This happens because the traveling

signal is not absorbed completely and can be resolved by

matching the impedance. For CAN in particular this means

the bus needs to end with a resistor of 120 ohm. This line

ending is only needed twice: at the beginning of the bus and

at the end. Not every node has this.

2) CAN transceiver is responsible for converting signal

levels from the CAN bus to levels the controller can

understand. It also has protective circuitry to protect the

CAN controller.

ADM3053 by Analog devices

Specifications:

 5V operation.

 High speed data rates up to 5Mbps.

 20-led, wide body SOIC package.

 Operating temperature range: -40˚C to 85˚C.[11]

Simulation of On-board diagnostics in

Automobiles using CAN Protocol

Swathi Tangi, Anshuman Kumar, Chinmay Khandalkar

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 8, August 2014

807

Fig 2: Building Blocks to hardware components

3) CAN controller receives incoming messages from the

CAN transceiver, waits until all bits have arrived, does some

error checking and acts as a buffer for the host processor.

 ATMEGA32M1-15AD by Atmel devices.

Specifications:

 8 bit microcontroller.

 AVR enhanced RISC architecture.

 Throughputs approaching 1 MIPS/MHz.

 Harvard architecture.

 11-channel 10-bit ADC.

 10-bit ADC.

 CAN 2.0 A/B with 6 message objects.

 Operating voltage: 2.7V-5.5V.

 Extended operating temperature: -40˚C to 125˚C.

 Automotive grade. [10]

4) Host processor/CPU is the brains of the CAN-node. It

handles all the sensor or actuator data but does not know

anything about the CAN protocol. That is the job of the CAN

controller.

5) Sensor/Actuator

III. SOFTWARE DEVELOPMENT

A. Sender Code Algorithm

Main Function

1: Start.

2: Store function definitions and global variable

definitions in the header file.

3: Initialize the microcontroller, the analog-digital convertor

and the CAN module.

4: Clear the data transmit buffer.

5: Infinite loop. (The rest of the program is determined by

interrupts)

6: End.

Microcontroller Initialization

1: Start.

2: Set the CLKPR (Clock Prescale Register) to 0x00. (Clock

Division Factor of 1)

3: Mark Pin D1 as an output pin.

4: Enable the global interrupt triggering.

5: End.

ADC Initialization

1: Start

2: Select the program pins ADC4, ADC6, ADC7, ADC10 by

setting the appropriate bits of the ADMUX register

3: Set the appropriate bits of the second configuration

register ADCSRA.

4: Set the appropriate bits of the third configuration register

ADCSRB.

5: Set the bit of timer0 configuration registers, TCCR0A and

TCCR0B.

6: Set the TCNT0 register to 0. (Stores the current state of the

timer)

7: End.

CAN Initialization

1: Start.

2: Perform software reset on the CAN Module.

3: Set the CAN timer prescaler register to 0. (Used to select

the clock division factor for the CAN Module)

4: Reset each of the message objects.

5: Use the 3 registers CANBT1, CANBT2, and CANBT3 to

set the baud rate timing.

6: Configure the CANGIE registers to select which interrupts

can be generated. (In this case, the global CAN interrupt is

enabled and the interrupt on a received CAN message)

7: Enable the process for CAN module.

8: Assign a separate Message Object and Message ID to each

of the analog sensors.

9: Stop.

ADC Interrupt Handler

1: Start.

2: Access the 8 most significant bits through ADCH by

selecting left adjustment in the initialization.

3: If counter value exceeds 3, start a new conversion.

4: Load a new value into the ADMUX register to select a new

analog channel based on the counter value.

5: Write a logical one to bit 1 of the TIFR0 register. (Prevents

generation of new interrupts)

6: Stop.

Message Transmission

1: Start.

2: While Loop: Wait for the message object to be available.

3: Set the CANPAGE register to access the particular

Message Object (Mob).

4: Set the interrupt enable bits of the CANIE2 register for the

MOB.

5: Reset all the flags of the status register CANSTMOB.

6: Set the data length and normal mode of the control register

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 8, August 2014

808

ISSN: 2278 – 909X All Rights Reserved © 2014 IJARECE

CANCDMOB.

7: Load the addresses into the CANIDT1 and CANIDT2

registers.

8: Load the data into the MOB data buffers by writing to the

CANMSG register.

9: Put the MOB in transmit mode.

10: End.

CAN Interrupt Handler

1: Start

2: Check for the TXOK flag. (Means transmission was

complete)

3: Disable the MOB.

4: Reset all the interrupt flags.

5: Reset the original CANPAGE value.

6: End.

B. Receiver Code Algorithm

Main Function

1: Start.

2: Store function definitions and global variable definitions

in the header file.

3: Initialize the microcontroller, the digital-analog convertor

and the CAN module.

4: Clear the data transmit buffer.

5: Initialize the Message Objects 0 and 1.

6: Infinite loop. (The rest of the program is determined by

interrupts)

7: End.

Microcontroller Initialization

1: Start.

2: Set the CLKPR (Clock Prescale Register) to 0x00. (Clock

Division Factor of 1)

3: Enable the global interrupt triggering.

4: End.

DAC Initialization

1: Start.

2: Set the appropriate bits of the ADMUX register.

3: Set the appropriate bits of the ADCSRB register. (Same as

ADC)

4: Configure the DAC using DACON register.

5: End.

CAN Initialization

1: Start.

2: Perform software reset on the CAN Module.

3: Set the CAN timer prescaler register to 0. (Used to select

the clock division factor for the CAN Module)

4: Reset each of the message objects.

5: Use the 3 registers CANBT1, CANBT2, and CANBT3 to

set the baud rate timing.

6: Configure the CANGIE registers to select which interrupts

can be generated. (In this case, the global CAN interrupt is

enabled and the interrupt on a received CAN message)

7: Enable the process for CAN module.

8: Assign a separate Message Object and Message ID to each

of the analog sensors.

9: Stop.

CAN Interrupt Handler

1: Start.

2: Check if the interrupt generated was by an incoming

message.

3: According to the length of the data of the incoming

message, retain data from CANMSG.

4: Write the received data to DACH. (Starts the DA

Conversion)

5: End.

Set an MOB in receiving mode.

1: Start.

2: Write 0b11111111 to CANIDM1 register. (Selects the 8

most significant bits)

3: Write logical 0 to bits 7:5 of CANIDM2 register. (3 least

significant bits will be ignored)

4: Write 10 to bits 7:6 of the CANCDMOB register to turn

the MOB in receiving mode.

5: End.

IV. CIRCUITS AND SCHEMATICS

All the circuit schematics have been developed using

EAGLE (Easily Applicable Graphical Layout Editor)

software by CadSoft. Eagle was used to design the breakout

board. The symbols for the ADM3053 and the

ATMEGA32M1 were not in the standard eagle library, so it

was designed personally.

The process consisted of referring the datasheets for exact

dimensions of the IC, pins, gaps between the pins along with

creating linkages between the pins and their functions.

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 8, August 2014

809

Fig 3: IC footprints and schematics.

Fig 4: CAN sender node schematic

Fig 5: CAN receiver node schematic

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 8, August 2014

810

ISSN: 2278 – 909X All Rights Reserved © 2014 IJARECE

V. PROGRAMMING THE MICROCONTROLLER

Fig 6:ISP Programming of AVR Microcontroller

The ATMEGA32M1 was programmed using In-System

Programming (ISP). This is done by writing the code in the

flash memory of the microcontroller through the pins that are

normally used for serial communication (ISP). These pins

are: VCC, GND, /RESET, MOSI, MISO and SCK. To be

able to do this, you need a serial programmer. Instead of

buying one of these, an Arduino was programmed to act as a

serial programmer. In this way, the computer program

AVRdude can be used to send the assembly code of the

program to the Arduino using USB. The Arduino then

pushes the code onto the micro controller using the serial

port. The wiring for this is visualized in figure 6.

[6][7][8][12]

VI. PROGRAMMING THE LCD

The AT89C51ED2 kit with integrated LCD was used for

the display of the temperature and the fuel status. The

AT89C51ED2 was programmed in assembly to detect a high

signal which would be received by the receiver

microcontroller when the temperature exceeds its limit. The

pin 1.7 acts as the input port for this signal. The same was

implemented for the fuel status. The sender microcontroller

continuously checks the input voltage from the

potentiometer. As the resistance increases, this voltage

increases and the fuel indicator light present in the receiver

end lights up. This simultaneously sends a signal to a

different kit dedicated for fuel status display which

accordingly displays the Fuel status.

VII. RESULT ANALYSIS

The two input parameters taken in consideration are

Temperature and the Fuel status. To detect the temperature

we have used the temperature sensor and to detect the fuel

status we have used a potentiometer which acts as a fuel

gauge sensor as they are based on the same principle. The

output consists of an indicator light and an LCD display

continuously monitoring the status of the inputs.

The fuel gauge sensor works as a potentiometer. As the

fuel decreases the resistance increases and vice versa. Hence,

this can be simulated using a potentiometer. To detect the

temperature LM-35 sensor from NI is used and it checks the

temperature of the engine. The safety temperature for the

engine (Body Frame) is roughly around 100˚ C-105˚C. Since

these values can’t be achieved, we have reduced this value to

70˚C for testing purposes which can be simulated using a

solder iron.

As shown in figure 7, the circuit comprises of two sets of

microcontroller and transceiver. The left side is the sender

node whereas the receiver node is placed on the right. All the

input values are given to the sender node and the outputs are

controlled by the receiver node.

The displays in the AT89C51ED2 Kits were programmed

to indicate the status of the fuel and temperature separately.

The Fuel LCD has two states i.e. Normal and Reserve. The

temperature LCD also consists of two stages, Safe and High.

The indicator lights and the LCD’s are controlled by the

receiver microcontroller which sends the signal after the

sender microcontroller converts them to digital values. The

receiver microcontroller compares these values to

pre-determined variables (For temperature 0.65 volts and for

fuel 2.5 volts) and sends the control signals to the LED’s and

the LCD’s accordingly. The fig 7 indicates the normal

condition of the LCD’S and the temperature indication

LED’s lighting up in respond to high temperature of the

solder iron.

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 8, August 2014

811

Fig 7:LCD Display and temperature LEDs

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 8, August 2014

812

ISSN: 2278 – 909X All Rights Reserved © 2014 IJARECE

VIII. CONCLUSION

The current automobile data-acquisition systems have

become complex, due to which the cabling has increased

resulting in extensive wiring. Due to introduction of

electronic injection system and safety system such as ABS,

the communication between the sensors and the ECU is very

critical. This communication is achieved through various

protocols and mainly by Controller Area Network Protocol

which is one of the five standard protocols of the On-board

diagnostics-II standard implemented in most of the cars. The

circuit implemented can be designed on a PCB and a compact

module of a node can be manufactured. Thus a complete

CAN circuit can be implemented for an automobile with

more number of nodes for each sensor. Recent development

in CAN is the introduction of the CAN FD. This eradicates

the problem of higher bandwidth requirement of the 29-bit

identifier and has increased bit rate allowing faster flow of

information between the sensor and the ECUs. The protocol

was simulated on a short-scale basis comprising of two nodes

with one as the sender and the other as the receiver node. The

sender node is set with the analog values of temperature and

fuel. These values are converted to digital by the sender

microcontroller ADC and sent to the receiver node via the

CAN bus setup by the transceivers. The receiver node

compares these digital values and accordingly sends the

control signals to the LCD and the LED’s.

REFERENCES

[1] S. Vijaylaksmi, “Vehicle Control System Implementation Using CAN

Protocol”, International Journal of Advanced Research in Electrical,

Electronics and Instrumentation Engineering, Volume 2, Issue 6, June

2013.

[2] “A Gateway System for an Automotive System: LIN, CAN, and

FlexRay”, The IEEE International Conference on Industrial Informatics

(INDIN 2008), DCC, Daejeon, Korea, July 13-16, 2008.

[3] Steve Corrigan, “Introduction to Controller Area Network”, Application

Report SLOA101A- August 2002 – Revised July 2008.

[4] Mike Blenderman, “CAN on the AVR”, Draft 1.2 prerelease.

[5] “Controller Area Network Overview (CAN)”, White Paper, National

Instruments.

[6] “In System Programming(ISP) of the ATMEL AVR flash microcontroller

family using the SPI programming interface”, AN101, Application Note,

Equinox_Tech.

[7]”Atmel AVR910”, Application Note, www.atmel.in

[8] “Atmel AVR4027”, Application Note, www.atmel.in

[9] “Atmel AVR322”, Application Note, www.atmel.in

[10] Datasheet ATMega32M1 Automotive Summary, www.atmel.in

[11] Datasheet ADM3053 Analog Devices, www.analog.com

[12] “AVR-LibC user Manual-Savannah”, www.nongnu.org

 Swathi Tangi has obtained her B.Tech Degree in Electrical

and Electronics Engineering from S.T.I.E.T College, Vizianagram in 2008,

M.Tech (Power & Energy Systems) Degree from NITK Surathkal in 2010 and

is presently serving Manipal Institute of Technology, Manipal as Assistant

Professor in EEE Department. Her areas of interest are Power Quality, Power

system Dynamics, Utility applications of power electronics (HVDC, SVC,

FACTS), Lightning and nuclear EMP impact on power lines.

Chinmay Khandalkar completed his B.E Electrical &

Electronics from Manipal Institute of Technology, Manipal in 2014. He was the

part of the official formula student team “Formula Manipal” of Manipal

University which participated in Formula Student Germany, Hockenheimring

and Formula Student Czech Republic, Hradec Kralove in 2013.His areas of

interest are Automotive electronics and embedded systems.

 Anshuman Kumar completed his B.E Electrical &

Electronics from Manipal Institute of Technology, Manipal in 2014. His areas

of interests are Computer Networks, Embedded Systems, and Automotive

Electronics.

http://www.atmel.in/

