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Abstract—this paper proposes new processor architecture for 

data-parallel applications based on the combination of VLIW 

and vector processing paradigms. It uses VLIW architecture for 

processing multiple independent scalar instructions concurrently 

on parallel execution units. Data parallelism is expressed by 

vector ISA and processed on the same parallel execution units of 

the VLIW architecture. The proposed processor, which is called 

VecLIW, has register file of 64x32-bit registers in the decode 

stage for storing scalar/vector data. VecLIW can issue up to four 

scalar/vector operations in each cycle for parallel processing a set 

of operands and producing up to four results. Which loads/stores 

128- bit scalar/vector data from/to data cache. Four 32-bit results 

can be written back into VecLIW register file.  
 

Keywords—VLIW architecture; vector processing; data-level 

parallelism; FPGA/VHDL implementation 
 

I. INTRODUCTION   
One of the most important methods for achieving high 

performance is taking advantage of parallelism. The simplest 
way to take the advantage of parallelism among instructions is 
through pipelining, which overlaps instruction execution to 
reduce the total time to complete an instruction sequence (see 
[1] for more detail). All processors since about 1985 use the 
pipelining technique to improve performance by exploiting 
instruction-level parallelism (ILP). The instructions can be 
processed in parallel because not every instruction depends on 
its immediate predecessor. After eliminating data and control 
stalls, the use of pipelining technique can achieve an ideal 
performance of one clock cycle per operation (CPO). To 
further improve the performance, the CPO would be decreased 
to less than one. Obviously, the CPO cannot be reduced below 
one if the issue width is only one operation per clock cycle. 
Therefore, multiple-issue scalar processors fetch multiple 

 

 
scalar instructions and allow multiple operations to issue in a 
clock cycle. However, vector processors fetch a single vector 
instruction (v operations) and issue multiple operations per 
clock cycle. Statically/dynamically scheduled superscalar 
processors issue varying numbers of operations per clock 
cycle and use in-order/out-of-order execution [2, 3]. Very long 
instruction word (VLIW) processors, in contrast, issue a fixed 
number of operations formatted either as one large instruction 
or as a fixed instruction packet with the parallelism among 
independent operations explicitly indicated by the instruction 
[4]. 
 

VLIW and superscalar implementations of traditional 
scalar instruction sets share some characteristics: multiple 
execution units and the ability to execute multiple operations 
simultaneously. However, the parallelism is explicit in VLIW 
instructions and must be discovered by hardware at run time in 
superscalar processors. Thus, for high performance, VLIW 
implementations are simpler and cheaper than superscalars 
because of further hardware simplifications. However, VLIW 
architectures require more compiler support. See [5] for more 
detail. 
 

VLIW architectures are characterized by instructions that 
each specify several independent operations. Thus, VLIW is 
not CISC instruction, which typically specify several 
dependent operations. However, VLIW instructions are like 
RISC instructions except that they are longer to allow them to 
specify multiple independent simple operations. A VLIW 
instruction can be thought of as several RISC instructions 
packed together, where RISC instructions typically specify 
one operation. The explicit encoding of multiple operations 
into VLIW instruction leads to dramatically reduced hardware 
complexity compared to superscalar. Thus, the main 
advantages of VLIW is that the highly parallel implementation 
is much simpler and cheaper to build the equivalently 
concurrent RISC or CISC chips. See [6] for architectural 
comparison between CISC, RISC, and VLIW. 
 

On multiple execution units, this paper proposes new 

processor architecture for accelerating data -parallel applications 

by the combination of VLIW and vector processing paradigms. It 

is based on VLIW architecture for processing multiple scalar 

instructions concurrently. Moreover, 
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data-level parallelism (DLP) is expressed efficiently using 
vector instructions and processed on the same parallel 
execution units of the VLIW architecture. Thus, the proposed 
processor, which is called VecLIW, exploits ILP using VLIW 
instructions and DLP using vector instructions. The use of 
vector instruction set architecture (ISA) lead to expressing 
programs in a more concise and efficient way (high semantic), 
encoding parallelism explicitly in each vector instruction, and 
using simple design techniques (heavy pipelining and 
functional unit replication) that achieve high performance at 
low cost [7, 8]. Thus, vector processors remain the most 
effective way to exploit data-parallel applications [9, 10]. 
Therefore, many vector architectures have been proposed in 
the literature to accelerate data-parallel applications [11-17]. 
 

Commercially, the Cell BE architecture [18] is based on 
heterogeneous, shared-memory chip multiprocessing with nine 
processors: Power processor element is optimized for control 
tasks and the eight synergistic processor elements (SPEs) 
provide an execution environment optimized for data 
processing. SPE performs both scalar and data-parallel SIMD 
execution on a wide datapaths. NEC Corporation introduced 
SX-9 processors that run at 3.2 GHz, with eight-way 
replicated vector pipes, each having two multiply units and 
two addition units [19]. The peak vector performance of SX-9 
processor is 102.4 GFLOPS. For non-vectorized code, there is 
a scalar processor that runs at half the speed of the vector unit, 
i.e. 1.6 GHz. 
 

To exploit VLIW and vector techniques, Salami and Valero 

[20] proposed and evaluated adding vector capabilities to a 

μSIMD-VLIW core to speed-up the execution of the DLP 

regions, while reducing the fetch bandwidth requirements. Wada 

et al. [21] introduced a VLIW vector media coprocessor, “vector 

coprocessor (VCP),” that included three asymmetric execution 

pipelines with cascaded SIMD ALUs. To improve performance 

efficiency, they reduced the area ratio of the control circuit while 

increasing the ratio of the arithmetic circuit. This paper combines 

VLIW and vector processing paradigms to accelerate data-parallel 

applications. On unified parallel datapath, our proposed VecLIW 

processes multiple scalar instructions packed in VLIW and vector 

instructions by issuing up to four scalar/vector operations in each 

cycle. However, it cannot issue more than one memory operation 

at a time, which loads/stores 128-bit scalar/vector data from/to 

data cache. Four 32-bit results can be written back into VecLIW 

register file. The complete design of our proposed VecLIW 

processor is implemented using VHDL targeting the Xilinx 

FPGA Virtex5, XC5VLX110T-3FF1136 device. 

 
The rest of the paper is organized as follows. Applying 

Amdahl'Law on VecLIW is presents in Section II. The 
VecLIW architecture is depicted in detail in Section III. 
Section IV describes the FPGA/VHDL implementation of 
VecLIW. Finally, Section V concludes this paper and gives 
directions for future work. 
 

II. APPLYING AMDAHL'S LAW ON VECLIW  
 

Vector ISA reduces the semantic gap between programs 

and hardware [9]. Programmer can express parallelism to 

hardware using vector instructions. Otherwise, vector 

compilers did ultimately get good at synthesizing vector 
operations even when they were not explicitly expressed. 
Thus, the generated code says something higher-level, and 
then the processor manipulates the simple operations on its 

own (see [5] for more detail). 
 

Programs have several different portions of their runtime 
that can be accelerated to differing degrees. On VecLIW, 
programs can be divided into scalar (unvectorizable) and 
vectorizable parts. Vectorizable parts can be accelerated to 
differing degrees on parallel execution units using vector ISA. 
On the other hand, scalar parts may be accelerated on multiple 
execution units using VLIW. Thus, on VecLIW, not only 
vectorizable parts are sped up but also scalar parts. It is well 
known that Amdahl's Law [22] governs the speedup of using 
parallel processing on a problem versus using sequential 
processing. It states that the performance improvement to be 
gained from using some faster mode of execution is limited by 
the fraction of the time the faster mode can be used. The main 
advantage of the VecLIW is the increase of the faster mode 
fraction by parallel processing VLIW/vector instructions on 
multiple execution units. Consider an application consists of a 
scalar code, which cannot be vectorizable, and vectorizable 
code, which spends V fraction of time on the baseline scalar 
processor. This vectorizable code can be decomposed further 

into V 1, V2, …, Vm fractions that can be sped up by executing 
vector instructions on multiple execution units by factors of 

P1, P2, …, Pm, respectively, where V = V1 + V2 + … + Vm. 
Moreover, the unvectorizable, scalar code that can be sped up 
using VLIW spends S fraction of time on the baseline scalar 
processor, where scalar code that cannot be sped up using 
VLIW or vector instructions spends (1 – S – V ) fraction of 

time. S can be decomposed further into S 1, S2, …, Sn fractions 

that can be sped up by factors of q1, q2, …, qn, respectively, 

where S = S1 + S 2 + … + Sn. Thus, Amdahl's Law predicts an 
overall speedup equals 

 
 

          Using Amdahl's Law, the scalar parts (1 – S – V) that 
are not sped up using VLIW or vector instructions will 
dominate the running time as increasing the parallel execution 
units. Thus, VecLIW minimizes the unparallel fraction of time 
(1 – S – V) by the execute of VLIW instructions in addition to 
vector instructions on parallel execution units. Obviously, the 
use of vector ISA alone results in unparallel fraction of time (1 
– V), which is greater than the corresponding VecLIW factor 
(1 – S – V). 
 

Generally, vector hardware works better than 
superscalar/VLIW processors on very regular code containing 
long vectors, whereas superscalar/VLIW processors tend to 
work better than vector processors when the structure of the 
code is somewhat more irregular, and when vectors are short. 
In addition, superscalar/VLIW processors offer the advantage 
that the same hardware can be used on the parts of code that 
are not vectorizable, whereas vector hardware is dedicated to 
vector use only. However, converting a vector instruction into 
scalar instructions degrades the performance because scalar 
ISA cannot convoy parallelism to processor. The use of vector 
ISA leads to multiple homogeneous, independent operations 
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are packaged into a single short vector instruction, resulting 
compact, expressive, and scalable code. The vector code is 
compact because a single vector instruction can describe v 
scalar operations and address up to 3v element operands. This 
dramatically reduces instruction bandwidth requirements. 
Moreover, many of the looping constructs required to iterate a 
scalar processor over the v operations are implicit in the vector 
instructions, reducing instruction bandwidth requirements 
even further. The code is expressive because software can pass 
on much valuable information to hardware about this group of 
v operations. See [7, 11] for more details. Therefore, VecLIW 
combines the advantages of VLIW that exploits ILP and 
vector processing that exploits DLP. 
 

III. THE ARCHITECTURE OF VECLIW PROCESSOR   
VecLIW is a load-store architecture with simple hardware, 

fixed-length instruction encoding, and simple code generation 
model. It supports few addressing modes to specify operands: 
register, immediate, and displacement addressing modes. In 
the displacement addressing mode, a constant offset is signed-
extended and added to a scalar register to form the memory 
address for loading/storing 128-bit data. VecLIW has a simple 
and easy-to -pipeline ISA, which supports the general 
categories of operations (data transfer, arithmetic, logical, and 
control) . According to the upper two bits (SV field) of the 
opcode, there are four types of the VecLIW instructions:  

(1) SV field = (00)2 for scalar-scalar instructions (.ss type),   
(2) SV field = (01)2 for scalar-vector instructions (.sv type),  
(3) SV field = (10)2 for vector-scalar instructions (.vs type),  

(4) SV field = (11)2 for vector-vector instructions (.vv type).  
 
For example sub.ss, sub.sv, sub.vs, and sub.vv perform scalar 

subtraction, scalar-vector subtraction, vector-scalar subtraction, 

and vector-vector subtraction, respectively, on v-element 

operands, where 1 ≤ v ≤ MVL (maximum vector length). 
 

VecLIW uses fixed length for encoding scalar/vector 

instructions. All VecLIW instructions are 4×32-bit 

 
128-bit VLIW Instruction  

32-bit Instruction 4  32-bit Instruction 3  32-bit Instruction 2  32-bit Instruction 1 
 Scalar  Scalar  Scalar  Scalar/vector 
 R-/I-format  R-/I-format  R-/I-format  R-/I-/J-format 
               

 
R-format 

Scalar/vector Si(2:0) Bn(2:0) Si(2:0) Bn(2:0) Si(2:0) Bn(2:0) 
Function  

Opcode Source: RS(5:0) Target: RT(5:0) Dest: RD(5:0)  

 
 

6-bit 6-bit 6-bit 6-bit 8-bit 
  

I-format 
Scalar/vector Si(2:0) Bn(2:0) Si(2:0) Bn(2:0) 

Immediate  

Opcode Source: RS(5:0) Target: RT(5:0)  

 
 

6-bit 6-bit 6-bit 14-bit 
 

 
 J-format 

 

Scalar 
Address  

Opcode  

 
 

6-bit 26-bit 
 

 
Fig. 1.  VecLIW ISA formats. 
 
(VLIW [127:0]), which simplifies instruction decoding. Figure 
1 shows the VecLIW instruction formats (R-format, I-format, 
and J-format), which are very close to MIPS [23, 24]. The first 
32-bit instruction (VLIW [31:0]) can be scalar/vector/control 
instruction. However, the remaining 32-bit instructions 
(VLIW [63:32], VLIW [95:64], and VLIW [127:96]) must be 
scalars. This simplifies the implementation of VecLIW and 
does not effect on the performance drastically since a vector 
instruction can code up to eight vector operations instead of 
four scalar operations stored in VLIW. However, control 
instructions encode only one operation. In this paper, a subset 
of the VecLIW ISA is used to build a simple and easy to 
explain version of 32-bit VecLIW architecture. 
 

Figure 2 shows the block diagram of our proposed 

VecLIW processor, which has common datapath for executing 
VLIW/vector instructions. Instruction cache stores 128-bit 
VLIW instructions of an application. Data cache loads/stores 
scalar/vector data needed for processing scalar/vector 

 

 

 
 
 Fig. 2. VecLIW data path for executing multi-scalar/vector 

instructions.
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instructions. A single register file is used for both multi-

scalar/vector elements. The control unit feeds the parallel 

execution units by the required operands (scalar/vector elements) 

and can produce up to four results each clock cycle. Scalar/vector 

loads/stores take place from/to the data cache of VecLIW in a rate 

of 128-bit (four elements: 4×32 -bit) per clock cycle. Finally, the 

writeback stage writes into the VecLIW register file up to 4×32-

bit results per clock cycle coming from the memory system or 

from the execution units. The use of unified hardware for 

processing multi-scalar/vector data makes efficient exploitation of 

resources even though the percentage of DLP is low. Comparing 

with the baseline scalar processor (five stage pipeline), the 

complexity of decode, execute, and writeback stages of the 

VecLIW are about four times. However, fetch and memory access 

stages are approximately the same as in the well-known five-stage 

scalar pipeline. The design of the five-stage MIPS pipeline 

datapath used in the baseline scalar processor is explained in 

detail in [25]. 
 

In more details, VecLIW has a modified five-stage 
pipeline for executing multi-scalar/vector instructions by: (1) 
fetching 128-bit VLIW instruction, (2) decoding/reading 
operands of four individual instructions, (3) executing four 
scalar/vector operations, (4) accessing memory to load/store 
128-bit data, and (5) writing back four results. The VLIW 
instruction pointed by PC is read from the instruction cache of 
the fetch stage and stored in the instruction fetch/decode 
(IF/ID) pipeline register. The control unit in the decode stage 
reads the fetched VLIW instruction from IF/ID pipeline 
register to generate the proper control signals needed for 
processing multiple scalar or vector data. The register file of 
the VecLIW has eight banks (B0 to B7), eight-element each 
(B0.0 to B0.7, B1.0 to B1.7, …, and B7.0 to B7.7). 
Scalar/vector data are accessed from VecLIW register file 
using 3-bit bank number (Bn) concatenated with 3-bit start 
index (Si). 2×4×32-bit operands can be read and 4×32-bit can 
be written to the VecLIW register file each clock cycle. Thus, 
the control unit reads the Si.Bn fields of RS (register source), 
RT (register target), and RD (register destination) of each 
individual instruction in the fetched VLIW as well as VLR 
(vector length register) to generate the sequence of control 
signals needed for reading/writing multi-scalar/vector data 
from/to VecLIW register file. The VecLIW register file can be 
seen as 64×32-bit scalar registers or 8×8×32-bit vector 
registers (eight 8 -element vector registers). Moreover, the 
start index (Si) could be non-zero (0 ≤ Si ≤ 7) and the vector 
data are stored in VecLIW banks in round-robin fashion. 
 

Four individual instructions packed in VLIW instruction are 
decoded and their operands are read from the unified register file 

(RsVal1/RtVal1, RsVal2/RtVal2, RsVal3/RtVal3, and 

RsVal4/RtVal4) according to four pairs of RS/RT fields 

(RS1/RT1, RS2/RT2, RS3/RT3, and RS4/RT4), respectively. 

Moreover, the 14-bit immediate values (VLIW[13:0], 
VLIW[45:32], VLIW[77:64], and VLIW[109:96]) of the I-format 
are signed-/unsigned-extended into 4×32-bit immediate values 

(ImmVal1, ImmVal2, ImmVal3, and ImmVal4) . These RsVal, 

RtVal, and ImmVal values are stored in the ID/EX pipeline 
register for processing in the execute stage. In addition to 
decoding the individual instructions of VLIW and accessing 
VecLIW register file, RS.Si, RT.Si, RD.Si, and ImmVal values 

Are loaded into counters called RScounter, RTcounter, 

RDcounter, and ImmCounter, respectively. For decoding vector 

instructions, the control unit stalls the fetch stage and iterates the 

process of reading vector elements, incrementing RScounter, 

RTcounter, and RDcounter by four and the immediate value 

(ImmCounter) by 16, and calculating the destination registers. 

Depending on the vector length (v), the control unit issues 

operands to the execution units through ID/EX pipeline register 

number of times equals v/4 , where 1≤v≤MVL, where MVL 

equals eight in the first implementation of VecLIW. After issuing 

each operation in the vector instruction, it is removed from IF/ID 

pipeline register and new VLIW instruction is fetched from 

instruction cache. 
 

The execute units of VecLIW operate on the operands 
prepared in the decode stage and perform operations specified 

by the control unit, which depends on opcode1/function1, 

opcode2/function2, opcode3/function3, and opcode4/function4 
fields of the individual instructions in VLIW. For load/store 

instructions, the first execute unit adds RsVal1 and ImmVal1 
to form the effective address. For register-register instructions, 
the execute units perform the operations specified by the 
control unit on the operands fed from the register file (RsVal 

1/RtVal1, RsVal2/RtVal2, RsVal3/RtVal3, and RsVal4/RtVal4) 
through ID/EX pipeline register. For register-immediate 
instructions, the execute units perform the operations on the 

source values (RsVal1, RsVal2, RsVal3, and RsVal4) and the 

extended immediate values (ImmVal1, ImmVal2, ImmVal3, 

and ImmVal4). In all cases, the results of the execute units is 
placed in the EX/MEM pipeline register.  

The VecLIW registers can be loaded/stored individually 
using load/store instructions. Displacement addressing mode is 
used for calculating the effective address by adding the 

singed-extended immediate value (ImmVal1) to RS register 

(RsVal1) of the first individual instruction in VLIW. In 

addition, the ImmVal1 register is incremented by 16 to prepare 
the address of the next 4×32-bit element of the vector data. In 
the first implementation of our proposed VecLIW processor, 
four elements (128-bit) can be loaded/stored per clock cycle. 
 

Finally, the writeback stage of VecLIW stores the 4×32-bit 
results come from the memory system or from the execution 
units in the VecLIW register file. Depending on the effective 
opcode of each individual instruction in VLIW, the register 
destination field is specified by either RT or RD. The control 
signals 4×Wr2Reg are used for enabling the writing 4×32-bit 
results into the VecLIW register file. 
 

IV. FPGA/VHDL IMPLEMENTATION OF VECLIW  
PROCESSOR  

The complete design of the VecLIW is implemented using 
VHDL targeting the Xilinx FPGA Virtex-5, XC5VLX110T-
3FF1136 device. A single Virtex-5 configurable logic blocks 
(CLB) comprises two slices, with each containing four 6-input 
LUTs and four flip-flops, for a total of eight 6-LUTs and eight 
flip-flops per CLB. Virtex-5 logic cell ratings reflect the 
increased logic capacity offered by the new 6-input LUT 
architecture. The Virtex-5 family is the first FPGA platform to 
offer a real 6-input LUT with fully independent (not shared) 
inputs. By properly loading LUT, any 6-input combinational 
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function can be implemented. Moreover, the LUT can also be 

configured as a 64×1 or 32×2 distributed RAM. Besides, a 

single LUT supports a 32-bit shift register. See [26-28] for 

more details. 
 

Figure 3 shows the top-level RTL schematic diagram of 
our proposed VecLIW. It is generated from synthesizing the 
VHDL code of the VecLIW processor on Xilinx ISE 13.4. Our 
implementation of the VecLIW pipeline consists of five 
components: Fetch_Stage, Decode_Stage, Execute_Stage, 
Memory_Stage, and Writeback_Stage. The first component 
(Fetch_Stage) has three modules: Program_counter, 
Instruction_adder, and Instruction_memory. The 32-bit output 
address of the Program_ counter module is sent to the input of 
the Instruction_memory module to fetch 128-bit VLIW from 
instruction cache when read enable (RdEn) control signal is 
asserted. Note that the write enable (WrEn) control signal is 
used to fill in the instruction cache with the program 
instructions through 128-bit WrVLIW input. Depending on 
the PcUpdVal control signal („1‟ for branch and „0‟ for other 
instructions), the input address of Program_counter module is 
connected to the next sequential address (PC + 16: since each 
VLIW is 4×32-bit or 16 bytes) or the branch address (BrAddr) 
coming from the decode stage. Program_ counter is updated 
synchronously when PcUpdEn is asserted. The outputs of the 
fetch stage, next PC (128-bit NPC) and 128-bit VLIW 
instruction, are sent to the decode stage through IF/ID pipeline 
register. To accelerate the fetch stage, a carry-lookahead adder 
is implemented in the Instruction_adder module to increment 
PC by 16. In addition to 128×128-bit single-port RAM, 327 
LUT-FF pairs are needed for implementing the fetch stage 
modules (see Table 1). Note that the fetch stage of VecLIW 
exceeds the corresponding baseline scalar processor with the 
same size of the instruction memory (128×128-bit) by only 
104 LUT-FF pairs. 
 

The second component (Decode_Stage) has three modules: 
Control_unit, Register_file, and Hazard_detection. Depending 
on the control signals 4×1-bit IsUnSgn, the 4×14-bit 
immediate values are signed-/unsigned-extended to 4×32-bit. 
VecLIW register file has eight read ports and four write ports. 
In the decode stage, the fetched VLIW (4×32-bit instructions) 
is decoded and the register file is accessed to read multi-
scalar/vector elements (4×32-bit RsVal and 4×32-bit RtVal). 
The 2×4×32-bit outputs of the VecLIW registers are fed to the 
execute stage through ID/EX pipeline register. Note that 

decoding is done in parallel with reading registers, which is 
possible because these fields are at a fixed location in the 
VecLIW instruction formats, see Figure 1. Since the 
immediate portions of VLIW are located in an identical place 
in the I-format of VecLIW instructions, the extension of the 
immediate values are also calculated during this cycle just in 
case it is needed in the next cycle. 
 

The control unit of VecLIW is based on 
microprogramming, where control variables are stored in 
ROM (control memory). Each word in the control memory 
specifies the following control signals: IsUnSgn (0/1 for 
signed/unsigned instruction), RdRtDes (0/1 if destination is 
RT/RD), IsImmIns (0/1 for immediate/unimmediate 
instruction), RdEn (1 for load instruction), WrEn (1 for store 
instructions), Wr2Reg (1 when instruction writes result in 
register), and AluOpr (5-bit ALU operations). 
 

Hazard detection module in the decode stage can stall the 
fetch stage by disallowing PC to be updated (PcUpdEn = „0‟). 
Detecting interlocks early in the pipeline reduces the hardware 
complexity because the hardware never has to suspend an 
instruction that has updated the state of the processor, unless 
the entire processor is stalled [1]. In VecLIW, Hazard 
detection module interlocks the pipeline for a RAW (read after 
write) hazard with the source coming from a load instruction. 
If there is a RAW hazard with the source instruction being a 
load, the load instruction will be in the execute stage (RdEn = 
'1') when an instruction that needs the loaded data will be in 
the decode stage. Beside load interlock, the fetch stage should 
be stalled during the execution of vector instructions. A vector 
instruction processing v-element, stalls the fetch stage v/4 -1 
clock cycles. In the 8-element vector instruction, processing 
the second four elements results in activating PcUpdEn. 
Moreover, the PcUpdVal is given value „1‟ to increments the 
current PC by 16. 
 

As shown on Table 1, 10,720 LUT-FF pairs are required to be 

implemented the Decode_Stage component on FPGA. The 

complexity of the VecLIW decode stage is 413% (10720/2597) 

higher than the corresponding scalar decode stage because the 

size of VecLIW register file (8-read and 4-write ports) is about 

four times the size of the scalar register file (2-read and 1- write 

ports). Moreover, the decode unit of VecLIW decodes four 

individual instructions instead of one in case of the baseline scalar 

processor. Besides, the hazard detection unit of VecLIW 
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Fig. 3.  Top-level RTL schematic diagram of the proposed VecLIW processor. 



International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)  

Volume 3, Issue 12, December 2014 

1934 

ISSN: 2278 – 909X               All Rights Reserved © 2014 IJARECE 

 TABLE I. FPGA STATISTICS FOR VECLIW STAGES   
        

 Statistics  Fetch Stage Decode Stage Execute Stage Memory Stage Writeback Stage 
        

 Number of Slice Registers:  192 2421 736 128 0 
Slice Logic Number of Slice LUTs:  299 10718 3635 386 156 
Utilization Number used as Logic:  43 10718 3635 130 156 

 Number used as Memory:  256 0 0 256 0 
 Number of LUT Flip Flop pairs used:  327 10720 3850 386 156 

Slice Logic Number with an unused Flip Flop:  135 8299 3114 258 156 
Distribution Number with an unused LUT:  28 2 215 0 0 

 Number of fully used LUT-FF pairs:  164 2419 521 128 0 
Timing Maximum Frequency(MHz):  333.989 74.866 386.757 No path found No path found 

 
checks RAW hazard with the source instruction being a load 

against the four individual instructions in VLIW instead of one 

scalar instruction. 
 

The execute stage of VecLIW has two modules: ALUs and 
Forward_unit. The ALUs operate on four pairs of operands 
prepared in the decode stage. ALUs perform operations 
depending on the VLIW opcodes (4×5-bit AluOpr) and 
functions (4×8-bit Function). For load/store operations, the 
first ALU adds the operands (RsVal1 and ImmVal1) to form 
the effective address, however, the remaining ALUs are ideal. 
For register-register operations, the ALUi performs the 
operation specified by the 8-bit functioni control signals, on 
the values 32-bit RsVali and 32-bit RtVali, where 1 ≤ i ≤ 4. 
For register-immediate operations, the ALUi performs the 
operation specified by the 5-bit AluOpri control signals on the 
values in 32-bit RsVali and 32-bit ImmVali. In all cases, the 
result of the ALUs (4×32-bit AluOut) is placed in the 
EX/MEM pipeline register. 
 

Instead of complicate the decode stage, the forward unit of 

VecLIW is in the execute stage. The key observation needed to 

implement the forwarding logic is that the pipeline registers 

contain both the data to be forwarded as well as the source and 

destination register fields. In VecLIW processor, all forwarding 

logically happens from the ALUs or data memory outputs to the 

ALUs inputs and data to be written in memory (WrData). Thus, 

the forwarding can be implemented by comparing the destination 

registers of the instructions contained in the EX/MEM or 

MEM/WB stages against the source registers of the instructions 

contained in the ID/EX registers. In addition to the comparators 

and combinational logic required to determine when a forwarding 

path needs to be enabled, the multiplexers at the ALUs inputs 

should be enlarged. 
 

The execute stage has the about four times higher 
complexity as in scalar processor. The number of LUT-FF 
pairs needed for the VecLIW execute stage is 3,850, where 

3,114, 215, and 521 for unused flip-flops, unused LUT, and 
fully used LUT-FF pairs (see Table 1). 
 

The fourth stage is Memory_Stage, which has one 
component called Data_memory. Not all instructions need to 
access memory stage. If instruction is a load, 128-bit data 
returns from memory and is placed in the MEM/WB pipeline 
register; if it is a store, then the data from the EX/MEM 
pipeline register (128-bit WrData) is written into memory. In 
either case the address used (AluOut) is the one computed 
during the prior cycle and stored in the EX/MEM pipeline 

 
Register. In addition to 128×128 -bit single-port RAM, Table 1 

shows that 386 LUT-FF pairs are needed for the memory access 

stage of the VecLIW, which has 289 LUT-FF pairs over the 

baseline scalar stage with the same size of data memory. 
 

The last stage is the Writeback_Stage, which writes the 

scalar/vector results into the VecLIW register file. It has 

multiplexers to select the results come from the memory 
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Fig. 4.  VecLIW pipeline. 
 

TABLE II. FPGA STATISTICS FOR VECLIW PROCESSOR 
    

  Statistics  
  

 2x128x128-bit single-port RAM 
 4x32x32-bit multiplier 2x128-bit latch 
 6x32-bit adder 4x64-bit latch 
 4x32-bit subtractor 128-bit comparator equal 
 4-bit adder 32-bit comparator 
 4-bit subtractor greatequal 
 33x6-bit adder 32-bit comparator greater 

HDL 3x64-bit adder 4x32-bit comparator less 
Synthesis 3x64-bit up accumulator 32-bit comparator 
Report 7x1-bit register lessequal 

 7x128-bit register 2x4-bit comparator 
 2-bit register lessequal 
 20-bit register 76x6-bit comparator equal 
 5x24-bit register 8x32-bit 64-to-1 
 74x32-bit register multiplexer 
 9x4-bit register 128x1-bit xor2 
 72x1-bit latch 11-bit xor2 
 Number of Slice Registers: 3992 
Slice Logic Number of Slice LUTs: 14826 
Utilization  Number used as Logic: 14570 

  Number used as Memory: 256 
 Number of LUT Flip Flop pairs used: 17425 
Slice Logic  Number with an unused Flip Flop: 13433 
Distribution  Number with an unused LUT: 2599 

  Number of fully used LUT-FF pairs: 1393 
Timing Maximum Frequency: 75.825MHz 
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system (128-bit MemOut) or the results come from the ALUs 
(4×32-bit AluOut). Depending on the opcodes, the register 
destination field is specified by RD or RT (RdRtDes). Only 
156 LUT -FF pairs are needed for VecLIW writeback stage 
(see Table 1), which has 124 LUT-FF pairs over the 
corresponding writeback stage of the baseline scalar 
processor. The complexity of the VecLIW writeback stage is 
488% (156/32) higher than the corresponding scalar writeback 
stage because VecLIW writes back four elements per clock 
cycle instead of one. 
 

Table 2 summarizes the VecLIW complexity of VecLIW 
pipeline shown in Figure 4. The total number of LUT-FF pairs 
used is 17,425, where the number with an unused flip-flops is 
13,433, the number with an unused LUT is 2,599, and the 
number of fully used LUT-FF pairs is 1,393. The complexity 
of four-issue VecLIW is 443% higher the single issue scalar 
processor. 

 
SIMULATION RESULTS: 
 

 
 

 

V. CONCLUSIONS AND FUTURE WORK   
This paper proposes new processor architecture called 

VecLIW for accelerating data-parallel applications. VecLIW 
executes multi-scalar and vector instructions on the same 
parallel execution datapath. VecLIW has a modified five-stage 
pipeline for (1) fetching 128-bit VLIW instruction (four 
individual instructions), (2) decoding/reading operands of the 
four instructions packed in VLIW, (3) executing four 
operations on parallel execution units, (4) loading/storing 128-
bit (4×32-bit scalar/vector) data from/to data memory, and (5) 
writing back 4×32 -bit scalar/vector results. Moreover, this 
paper presents the FPGA implementation of our proposed 
VecLIW. Our implementation of VecLIW using VHDL 
targeting the Xilinx FPGA Virtex-5, XC5VLX110T-3FF1136 
device. It requires 17,425 LUT-FF pairs, where the number 
with an unused flip -flops is 13,433, the number with an 
unused LUT is 2,599, and the number of fully used LUT-FF 
pairs is 1,393. The complexity of four-issue VecLIW is 443% 
higher the single issue scalar processor. In the future, the 
performance of our proposed VecLIW will be evaluated on 
scientific and multimedia kernels/applications. 
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