
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 12, December 2014

1929

ISSN: 2278 – 909X All Rights Reserved © 2014 IJARECE

A VLIW- Architecture for executing Multi-Scalar/vector Instructions on unified datapath

A Durgaprasad Prof. K Suresh Kumar Prof.S Jagadeesh
M.Tech Student Scholar Associate Professor H.O.D ECE department
SSJ Engineering College SSJ Engineering College SSJ Engineering College

Abstract—this paper proposes new processor architecture for

data-parallel applications based on the combination of VLIW

and vector processing paradigms. It uses VLIW architecture for

processing multiple independent scalar instructions concurrently

on parallel execution units. Data parallelism is expressed by

vector ISA and processed on the same parallel execution units of

the VLIW architecture. The proposed processor, which is called

VecLIW, has register file of 64x32-bit registers in the decode

stage for storing scalar/vector data. VecLIW can issue up to four

scalar/vector operations in each cycle for parallel processing a set

of operands and producing up to four results. Which loads/stores

128- bit scalar/vector data from/to data cache. Four 32-bit results

can be written back into VecLIW register file.

Keywords—VLIW architecture; vector processing; data-level

parallelism; FPGA/VHDL implementation

I. INTRODUCTION
One of the most important methods for achieving high

performance is taking advantage of parallelism. The simplest
way to take the advantage of parallelism among instructions is
through pipelining, which overlaps instruction execution to
reduce the total time to complete an instruction sequence (see
[1] for more detail). All processors since about 1985 use the
pipelining technique to improve performance by exploiting
instruction-level parallelism (ILP). The instructions can be
processed in parallel because not every instruction depends on
its immediate predecessor. After eliminating data and control
stalls, the use of pipelining technique can achieve an ideal
performance of one clock cycle per operation (CPO). To
further improve the performance, the CPO would be decreased
to less than one. Obviously, the CPO cannot be reduced below
one if the issue width is only one operation per clock cycle.
Therefore, multiple-issue scalar processors fetch multiple

scalar instructions and allow multiple operations to issue in a
clock cycle. However, vector processors fetch a single vector
instruction (v operations) and issue multiple operations per
clock cycle. Statically/dynamically scheduled superscalar
processors issue varying numbers of operations per clock
cycle and use in-order/out-of-order execution [2, 3]. Very long
instruction word (VLIW) processors, in contrast, issue a fixed
number of operations formatted either as one large instruction
or as a fixed instruction packet with the parallelism among
independent operations explicitly indicated by the instruction
[4].

VLIW and superscalar implementations of traditional
scalar instruction sets share some characteristics: multiple
execution units and the ability to execute multiple operations
simultaneously. However, the parallelism is explicit in VLIW
instructions and must be discovered by hardware at run time in
superscalar processors. Thus, for high performance, VLIW
implementations are simpler and cheaper than superscalars
because of further hardware simplifications. However, VLIW
architectures require more compiler support. See [5] for more
detail.

VLIW architectures are characterized by instructions that
each specify several independent operations. Thus, VLIW is
not CISC instruction, which typically specify several
dependent operations. However, VLIW instructions are like
RISC instructions except that they are longer to allow them to
specify multiple independent simple operations. A VLIW
instruction can be thought of as several RISC instructions
packed together, where RISC instructions typically specify
one operation. The explicit encoding of multiple operations
into VLIW instruction leads to dramatically reduced hardware
complexity compared to superscalar. Thus, the main
advantages of VLIW is that the highly parallel implementation
is much simpler and cheaper to build the equivalently
concurrent RISC or CISC chips. See [6] for architectural
comparison between CISC, RISC, and VLIW.

On multiple execution units, this paper proposes new

processor architecture for accelerating data -parallel applications

by the combination of VLIW and vector processing paradigms. It

is based on VLIW architecture for processing multiple scalar

instructions concurrently. Moreover,

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 12, December 2014

1930

ISSN: 2278 – 909X All Rights Reserved © 2014 IJARECE

data-level parallelism (DLP) is expressed efficiently using
vector instructions and processed on the same parallel
execution units of the VLIW architecture. Thus, the proposed
processor, which is called VecLIW, exploits ILP using VLIW
instructions and DLP using vector instructions. The use of
vector instruction set architecture (ISA) lead to expressing
programs in a more concise and efficient way (high semantic),
encoding parallelism explicitly in each vector instruction, and
using simple design techniques (heavy pipelining and
functional unit replication) that achieve high performance at
low cost [7, 8]. Thus, vector processors remain the most
effective way to exploit data-parallel applications [9, 10].
Therefore, many vector architectures have been proposed in
the literature to accelerate data-parallel applications [11-17].

Commercially, the Cell BE architecture [18] is based on
heterogeneous, shared-memory chip multiprocessing with nine
processors: Power processor element is optimized for control
tasks and the eight synergistic processor elements (SPEs)
provide an execution environment optimized for data
processing. SPE performs both scalar and data-parallel SIMD
execution on a wide datapaths. NEC Corporation introduced
SX-9 processors that run at 3.2 GHz, with eight-way
replicated vector pipes, each having two multiply units and
two addition units [19]. The peak vector performance of SX-9
processor is 102.4 GFLOPS. For non-vectorized code, there is
a scalar processor that runs at half the speed of the vector unit,
i.e. 1.6 GHz.

To exploit VLIW and vector techniques, Salami and Valero

[20] proposed and evaluated adding vector capabilities to a

μSIMD-VLIW core to speed-up the execution of the DLP

regions, while reducing the fetch bandwidth requirements. Wada

et al. [21] introduced a VLIW vector media coprocessor, “vector

coprocessor (VCP),” that included three asymmetric execution

pipelines with cascaded SIMD ALUs. To improve performance

efficiency, they reduced the area ratio of the control circuit while

increasing the ratio of the arithmetic circuit. This paper combines

VLIW and vector processing paradigms to accelerate data-parallel

applications. On unified parallel datapath, our proposed VecLIW

processes multiple scalar instructions packed in VLIW and vector

instructions by issuing up to four scalar/vector operations in each

cycle. However, it cannot issue more than one memory operation

at a time, which loads/stores 128-bit scalar/vector data from/to

data cache. Four 32-bit results can be written back into VecLIW

register file. The complete design of our proposed VecLIW

processor is implemented using VHDL targeting the Xilinx

FPGA Virtex5, XC5VLX110T-3FF1136 device.

The rest of the paper is organized as follows. Applying

Amdahl'Law on VecLIW is presents in Section II. The
VecLIW architecture is depicted in detail in Section III.
Section IV describes the FPGA/VHDL implementation of
VecLIW. Finally, Section V concludes this paper and gives
directions for future work.

II. APPLYING AMDAHL'S LAW ON VECLIW

Vector ISA reduces the semantic gap between programs

and hardware [9]. Programmer can express parallelism to

hardware using vector instructions. Otherwise, vector

compilers did ultimately get good at synthesizing vector
operations even when they were not explicitly expressed.
Thus, the generated code says something higher-level, and
then the processor manipulates the simple operations on its

own (see [5] for more detail).

Programs have several different portions of their runtime
that can be accelerated to differing degrees. On VecLIW,
programs can be divided into scalar (unvectorizable) and
vectorizable parts. Vectorizable parts can be accelerated to
differing degrees on parallel execution units using vector ISA.
On the other hand, scalar parts may be accelerated on multiple
execution units using VLIW. Thus, on VecLIW, not only
vectorizable parts are sped up but also scalar parts. It is well
known that Amdahl's Law [22] governs the speedup of using
parallel processing on a problem versus using sequential
processing. It states that the performance improvement to be
gained from using some faster mode of execution is limited by
the fraction of the time the faster mode can be used. The main
advantage of the VecLIW is the increase of the faster mode
fraction by parallel processing VLIW/vector instructions on
multiple execution units. Consider an application consists of a
scalar code, which cannot be vectorizable, and vectorizable
code, which spends V fraction of time on the baseline scalar
processor. This vectorizable code can be decomposed further

into V 1, V2, …, Vm fractions that can be sped up by executing
vector instructions on multiple execution units by factors of

P1, P2, …, Pm, respectively, where V = V1 + V2 + … + Vm.
Moreover, the unvectorizable, scalar code that can be sped up
using VLIW spends S fraction of time on the baseline scalar
processor, where scalar code that cannot be sped up using
VLIW or vector instructions spends (1 – S – V) fraction of

time. S can be decomposed further into S 1, S2, …, Sn fractions

that can be sped up by factors of q1, q2, …, qn, respectively,

where S = S1 + S 2 + … + Sn. Thus, Amdahl's Law predicts an
overall speedup equals

 Using Amdahl's Law, the scalar parts (1 – S – V) that
are not sped up using VLIW or vector instructions will
dominate the running time as increasing the parallel execution
units. Thus, VecLIW minimizes the unparallel fraction of time
(1 – S – V) by the execute of VLIW instructions in addition to
vector instructions on parallel execution units. Obviously, the
use of vector ISA alone results in unparallel fraction of time (1
– V), which is greater than the corresponding VecLIW factor
(1 – S – V).

Generally, vector hardware works better than
superscalar/VLIW processors on very regular code containing
long vectors, whereas superscalar/VLIW processors tend to
work better than vector processors when the structure of the
code is somewhat more irregular, and when vectors are short.
In addition, superscalar/VLIW processors offer the advantage
that the same hardware can be used on the parts of code that
are not vectorizable, whereas vector hardware is dedicated to
vector use only. However, converting a vector instruction into
scalar instructions degrades the performance because scalar
ISA cannot convoy parallelism to processor. The use of vector
ISA leads to multiple homogeneous, independent operations

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 12, December 2014

1931

ISSN: 2278 – 909X All Rights Reserved © 2014 IJARECE

are packaged into a single short vector instruction, resulting
compact, expressive, and scalable code. The vector code is
compact because a single vector instruction can describe v
scalar operations and address up to 3v element operands. This
dramatically reduces instruction bandwidth requirements.
Moreover, many of the looping constructs required to iterate a
scalar processor over the v operations are implicit in the vector
instructions, reducing instruction bandwidth requirements
even further. The code is expressive because software can pass
on much valuable information to hardware about this group of
v operations. See [7, 11] for more details. Therefore, VecLIW
combines the advantages of VLIW that exploits ILP and
vector processing that exploits DLP.

III. THE ARCHITECTURE OF VECLIW PROCESSOR
VecLIW is a load-store architecture with simple hardware,

fixed-length instruction encoding, and simple code generation
model. It supports few addressing modes to specify operands:
register, immediate, and displacement addressing modes. In
the displacement addressing mode, a constant offset is signed-
extended and added to a scalar register to form the memory
address for loading/storing 128-bit data. VecLIW has a simple
and easy-to -pipeline ISA, which supports the general
categories of operations (data transfer, arithmetic, logical, and
control) . According to the upper two bits (SV field) of the
opcode, there are four types of the VecLIW instructions:

(1) SV field = (00)2 for scalar-scalar instructions (.ss type),
(2) SV field = (01)2 for scalar-vector instructions (.sv type),
(3) SV field = (10)2 for vector-scalar instructions (.vs type),

(4) SV field = (11)2 for vector-vector instructions (.vv type).

For example sub.ss, sub.sv, sub.vs, and sub.vv perform scalar

subtraction, scalar-vector subtraction, vector-scalar subtraction,

and vector-vector subtraction, respectively, on v-element

operands, where 1 ≤ v ≤ MVL (maximum vector length).

VecLIW uses fixed length for encoding scalar/vector

instructions. All VecLIW instructions are 4×32-bit

128-bit VLIW Instruction

32-bit Instruction 4 32-bit Instruction 3 32-bit Instruction 2 32-bit Instruction 1
 Scalar Scalar Scalar Scalar/vector
 R-/I-format R-/I-format R-/I-format R-/I-/J-format

R-format

Scalar/vector Si(2:0) Bn(2:0) Si(2:0) Bn(2:0) Si(2:0) Bn(2:0)
Function

Opcode Source: RS(5:0) Target: RT(5:0) Dest: RD(5:0)

6-bit 6-bit 6-bit 6-bit 8-bit

I-format
Scalar/vector Si(2:0) Bn(2:0) Si(2:0) Bn(2:0)

Immediate

Opcode Source: RS(5:0) Target: RT(5:0)

6-bit 6-bit 6-bit 14-bit

 J-format

Scalar
Address

Opcode

6-bit 26-bit

Fig. 1. VecLIW ISA formats.

(VLIW [127:0]), which simplifies instruction decoding. Figure
1 shows the VecLIW instruction formats (R-format, I-format,
and J-format), which are very close to MIPS [23, 24]. The first
32-bit instruction (VLIW [31:0]) can be scalar/vector/control
instruction. However, the remaining 32-bit instructions
(VLIW [63:32], VLIW [95:64], and VLIW [127:96]) must be
scalars. This simplifies the implementation of VecLIW and
does not effect on the performance drastically since a vector
instruction can code up to eight vector operations instead of
four scalar operations stored in VLIW. However, control
instructions encode only one operation. In this paper, a subset
of the VecLIW ISA is used to build a simple and easy to
explain version of 32-bit VecLIW architecture.

Figure 2 shows the block diagram of our proposed

VecLIW processor, which has common datapath for executing
VLIW/vector instructions. Instruction cache stores 128-bit
VLIW instructions of an application. Data cache loads/stores
scalar/vector data needed for processing scalar/vector

 Fig. 2. VecLIW data path for executing multi-scalar/vector

instructions.

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 12, December 2014

1932

ISSN: 2278 – 909X All Rights Reserved © 2014 IJARECE

instructions. A single register file is used for both multi-

scalar/vector elements. The control unit feeds the parallel

execution units by the required operands (scalar/vector elements)

and can produce up to four results each clock cycle. Scalar/vector

loads/stores take place from/to the data cache of VecLIW in a rate

of 128-bit (four elements: 4×32 -bit) per clock cycle. Finally, the

writeback stage writes into the VecLIW register file up to 4×32-

bit results per clock cycle coming from the memory system or

from the execution units. The use of unified hardware for

processing multi-scalar/vector data makes efficient exploitation of

resources even though the percentage of DLP is low. Comparing

with the baseline scalar processor (five stage pipeline), the

complexity of decode, execute, and writeback stages of the

VecLIW are about four times. However, fetch and memory access

stages are approximately the same as in the well-known five-stage

scalar pipeline. The design of the five-stage MIPS pipeline

datapath used in the baseline scalar processor is explained in

detail in [25].

In more details, VecLIW has a modified five-stage
pipeline for executing multi-scalar/vector instructions by: (1)
fetching 128-bit VLIW instruction, (2) decoding/reading
operands of four individual instructions, (3) executing four
scalar/vector operations, (4) accessing memory to load/store
128-bit data, and (5) writing back four results. The VLIW
instruction pointed by PC is read from the instruction cache of
the fetch stage and stored in the instruction fetch/decode
(IF/ID) pipeline register. The control unit in the decode stage
reads the fetched VLIW instruction from IF/ID pipeline
register to generate the proper control signals needed for
processing multiple scalar or vector data. The register file of
the VecLIW has eight banks (B0 to B7), eight-element each
(B0.0 to B0.7, B1.0 to B1.7, …, and B7.0 to B7.7).
Scalar/vector data are accessed from VecLIW register file
using 3-bit bank number (Bn) concatenated with 3-bit start
index (Si). 2×4×32-bit operands can be read and 4×32-bit can
be written to the VecLIW register file each clock cycle. Thus,
the control unit reads the Si.Bn fields of RS (register source),
RT (register target), and RD (register destination) of each
individual instruction in the fetched VLIW as well as VLR
(vector length register) to generate the sequence of control
signals needed for reading/writing multi-scalar/vector data
from/to VecLIW register file. The VecLIW register file can be
seen as 64×32-bit scalar registers or 8×8×32-bit vector
registers (eight 8 -element vector registers). Moreover, the
start index (Si) could be non-zero (0 ≤ Si ≤ 7) and the vector
data are stored in VecLIW banks in round-robin fashion.

Four individual instructions packed in VLIW instruction are
decoded and their operands are read from the unified register file

(RsVal1/RtVal1, RsVal2/RtVal2, RsVal3/RtVal3, and

RsVal4/RtVal4) according to four pairs of RS/RT fields

(RS1/RT1, RS2/RT2, RS3/RT3, and RS4/RT4), respectively.

Moreover, the 14-bit immediate values (VLIW[13:0],
VLIW[45:32], VLIW[77:64], and VLIW[109:96]) of the I-format
are signed-/unsigned-extended into 4×32-bit immediate values

(ImmVal1, ImmVal2, ImmVal3, and ImmVal4) . These RsVal,

RtVal, and ImmVal values are stored in the ID/EX pipeline
register for processing in the execute stage. In addition to
decoding the individual instructions of VLIW and accessing
VecLIW register file, RS.Si, RT.Si, RD.Si, and ImmVal values

Are loaded into counters called RScounter, RTcounter,

RDcounter, and ImmCounter, respectively. For decoding vector

instructions, the control unit stalls the fetch stage and iterates the

process of reading vector elements, incrementing RScounter,

RTcounter, and RDcounter by four and the immediate value

(ImmCounter) by 16, and calculating the destination registers.

Depending on the vector length (v), the control unit issues

operands to the execution units through ID/EX pipeline register

number of times equals v/4 , where 1≤v≤MVL, where MVL

equals eight in the first implementation of VecLIW. After issuing

each operation in the vector instruction, it is removed from IF/ID

pipeline register and new VLIW instruction is fetched from

instruction cache.

The execute units of VecLIW operate on the operands
prepared in the decode stage and perform operations specified

by the control unit, which depends on opcode1/function1,

opcode2/function2, opcode3/function3, and opcode4/function4
fields of the individual instructions in VLIW. For load/store

instructions, the first execute unit adds RsVal1 and ImmVal1
to form the effective address. For register-register instructions,
the execute units perform the operations specified by the
control unit on the operands fed from the register file (RsVal

1/RtVal1, RsVal2/RtVal2, RsVal3/RtVal3, and RsVal4/RtVal4)
through ID/EX pipeline register. For register-immediate
instructions, the execute units perform the operations on the

source values (RsVal1, RsVal2, RsVal3, and RsVal4) and the

extended immediate values (ImmVal1, ImmVal2, ImmVal3,

and ImmVal4). In all cases, the results of the execute units is
placed in the EX/MEM pipeline register.

The VecLIW registers can be loaded/stored individually
using load/store instructions. Displacement addressing mode is
used for calculating the effective address by adding the

singed-extended immediate value (ImmVal1) to RS register

(RsVal1) of the first individual instruction in VLIW. In

addition, the ImmVal1 register is incremented by 16 to prepare
the address of the next 4×32-bit element of the vector data. In
the first implementation of our proposed VecLIW processor,
four elements (128-bit) can be loaded/stored per clock cycle.

Finally, the writeback stage of VecLIW stores the 4×32-bit
results come from the memory system or from the execution
units in the VecLIW register file. Depending on the effective
opcode of each individual instruction in VLIW, the register
destination field is specified by either RT or RD. The control
signals 4×Wr2Reg are used for enabling the writing 4×32-bit
results into the VecLIW register file.

IV. FPGA/VHDL IMPLEMENTATION OF VECLIW
PROCESSOR

The complete design of the VecLIW is implemented using
VHDL targeting the Xilinx FPGA Virtex-5, XC5VLX110T-
3FF1136 device. A single Virtex-5 configurable logic blocks
(CLB) comprises two slices, with each containing four 6-input
LUTs and four flip-flops, for a total of eight 6-LUTs and eight
flip-flops per CLB. Virtex-5 logic cell ratings reflect the
increased logic capacity offered by the new 6-input LUT
architecture. The Virtex-5 family is the first FPGA platform to
offer a real 6-input LUT with fully independent (not shared)
inputs. By properly loading LUT, any 6-input combinational

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 12, December 2014

1933

ISSN: 2278 – 909X All Rights Reserved © 2014 IJARECE

function can be implemented. Moreover, the LUT can also be

configured as a 64×1 or 32×2 distributed RAM. Besides, a

single LUT supports a 32-bit shift register. See [26-28] for

more details.

Figure 3 shows the top-level RTL schematic diagram of
our proposed VecLIW. It is generated from synthesizing the
VHDL code of the VecLIW processor on Xilinx ISE 13.4. Our
implementation of the VecLIW pipeline consists of five
components: Fetch_Stage, Decode_Stage, Execute_Stage,
Memory_Stage, and Writeback_Stage. The first component
(Fetch_Stage) has three modules: Program_counter,
Instruction_adder, and Instruction_memory. The 32-bit output
address of the Program_ counter module is sent to the input of
the Instruction_memory module to fetch 128-bit VLIW from
instruction cache when read enable (RdEn) control signal is
asserted. Note that the write enable (WrEn) control signal is
used to fill in the instruction cache with the program
instructions through 128-bit WrVLIW input. Depending on
the PcUpdVal control signal („1‟ for branch and „0‟ for other
instructions), the input address of Program_counter module is
connected to the next sequential address (PC + 16: since each
VLIW is 4×32-bit or 16 bytes) or the branch address (BrAddr)
coming from the decode stage. Program_ counter is updated
synchronously when PcUpdEn is asserted. The outputs of the
fetch stage, next PC (128-bit NPC) and 128-bit VLIW
instruction, are sent to the decode stage through IF/ID pipeline
register. To accelerate the fetch stage, a carry-lookahead adder
is implemented in the Instruction_adder module to increment
PC by 16. In addition to 128×128-bit single-port RAM, 327
LUT-FF pairs are needed for implementing the fetch stage
modules (see Table 1). Note that the fetch stage of VecLIW
exceeds the corresponding baseline scalar processor with the
same size of the instruction memory (128×128-bit) by only
104 LUT-FF pairs.

The second component (Decode_Stage) has three modules:
Control_unit, Register_file, and Hazard_detection. Depending
on the control signals 4×1-bit IsUnSgn, the 4×14-bit
immediate values are signed-/unsigned-extended to 4×32-bit.
VecLIW register file has eight read ports and four write ports.
In the decode stage, the fetched VLIW (4×32-bit instructions)
is decoded and the register file is accessed to read multi-
scalar/vector elements (4×32-bit RsVal and 4×32-bit RtVal).
The 2×4×32-bit outputs of the VecLIW registers are fed to the
execute stage through ID/EX pipeline register. Note that

decoding is done in parallel with reading registers, which is
possible because these fields are at a fixed location in the
VecLIW instruction formats, see Figure 1. Since the
immediate portions of VLIW are located in an identical place
in the I-format of VecLIW instructions, the extension of the
immediate values are also calculated during this cycle just in
case it is needed in the next cycle.

The control unit of VecLIW is based on
microprogramming, where control variables are stored in
ROM (control memory). Each word in the control memory
specifies the following control signals: IsUnSgn (0/1 for
signed/unsigned instruction), RdRtDes (0/1 if destination is
RT/RD), IsImmIns (0/1 for immediate/unimmediate
instruction), RdEn (1 for load instruction), WrEn (1 for store
instructions), Wr2Reg (1 when instruction writes result in
register), and AluOpr (5-bit ALU operations).

Hazard detection module in the decode stage can stall the
fetch stage by disallowing PC to be updated (PcUpdEn = „0‟).
Detecting interlocks early in the pipeline reduces the hardware
complexity because the hardware never has to suspend an
instruction that has updated the state of the processor, unless
the entire processor is stalled [1]. In VecLIW, Hazard
detection module interlocks the pipeline for a RAW (read after
write) hazard with the source coming from a load instruction.
If there is a RAW hazard with the source instruction being a
load, the load instruction will be in the execute stage (RdEn =
'1') when an instruction that needs the loaded data will be in
the decode stage. Beside load interlock, the fetch stage should
be stalled during the execution of vector instructions. A vector
instruction processing v-element, stalls the fetch stage v/4 -1
clock cycles. In the 8-element vector instruction, processing
the second four elements results in activating PcUpdEn.
Moreover, the PcUpdVal is given value „1‟ to increments the
current PC by 16.

As shown on Table 1, 10,720 LUT-FF pairs are required to be

implemented the Decode_Stage component on FPGA. The

complexity of the VecLIW decode stage is 413% (10720/2597)

higher than the corresponding scalar decode stage because the

size of VecLIW register file (8-read and 4-write ports) is about

four times the size of the scalar register file (2-read and 1- write

ports). Moreover, the decode unit of VecLIW decodes four

individual instructions instead of one in case of the baseline scalar

processor. Besides, the hazard detection unit of VecLIW

F
et

ch

D
ec

o
d

e E x e c u
t

e

M
em

o
ry

W
B

ac
k

Fig. 3. Top-level RTL schematic diagram of the proposed VecLIW processor.

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 12, December 2014

1934

ISSN: 2278 – 909X All Rights Reserved © 2014 IJARECE

 TABLE I. FPGA STATISTICS FOR VECLIW STAGES

 Statistics Fetch Stage Decode Stage Execute Stage Memory Stage Writeback Stage

 Number of Slice Registers: 192 2421 736 128 0
Slice Logic Number of Slice LUTs: 299 10718 3635 386 156
Utilization Number used as Logic: 43 10718 3635 130 156

 Number used as Memory: 256 0 0 256 0
 Number of LUT Flip Flop pairs used: 327 10720 3850 386 156

Slice Logic Number with an unused Flip Flop: 135 8299 3114 258 156
Distribution Number with an unused LUT: 28 2 215 0 0

 Number of fully used LUT-FF pairs: 164 2419 521 128 0
Timing Maximum Frequency(MHz): 333.989 74.866 386.757 No path found No path found

checks RAW hazard with the source instruction being a load

against the four individual instructions in VLIW instead of one

scalar instruction.

The execute stage of VecLIW has two modules: ALUs and
Forward_unit. The ALUs operate on four pairs of operands
prepared in the decode stage. ALUs perform operations
depending on the VLIW opcodes (4×5-bit AluOpr) and
functions (4×8-bit Function). For load/store operations, the
first ALU adds the operands (RsVal1 and ImmVal1) to form
the effective address, however, the remaining ALUs are ideal.
For register-register operations, the ALUi performs the
operation specified by the 8-bit functioni control signals, on
the values 32-bit RsVali and 32-bit RtVali, where 1 ≤ i ≤ 4.
For register-immediate operations, the ALUi performs the
operation specified by the 5-bit AluOpri control signals on the
values in 32-bit RsVali and 32-bit ImmVali. In all cases, the
result of the ALUs (4×32-bit AluOut) is placed in the
EX/MEM pipeline register.

Instead of complicate the decode stage, the forward unit of

VecLIW is in the execute stage. The key observation needed to

implement the forwarding logic is that the pipeline registers

contain both the data to be forwarded as well as the source and

destination register fields. In VecLIW processor, all forwarding

logically happens from the ALUs or data memory outputs to the

ALUs inputs and data to be written in memory (WrData). Thus,

the forwarding can be implemented by comparing the destination

registers of the instructions contained in the EX/MEM or

MEM/WB stages against the source registers of the instructions

contained in the ID/EX registers. In addition to the comparators

and combinational logic required to determine when a forwarding

path needs to be enabled, the multiplexers at the ALUs inputs

should be enlarged.

The execute stage has the about four times higher
complexity as in scalar processor. The number of LUT-FF
pairs needed for the VecLIW execute stage is 3,850, where

3,114, 215, and 521 for unused flip-flops, unused LUT, and
fully used LUT-FF pairs (see Table 1).

The fourth stage is Memory_Stage, which has one
component called Data_memory. Not all instructions need to
access memory stage. If instruction is a load, 128-bit data
returns from memory and is placed in the MEM/WB pipeline
register; if it is a store, then the data from the EX/MEM
pipeline register (128-bit WrData) is written into memory. In
either case the address used (AluOut) is the one computed
during the prior cycle and stored in the EX/MEM pipeline

Register. In addition to 128×128 -bit single-port RAM, Table 1

shows that 386 LUT-FF pairs are needed for the memory access

stage of the VecLIW, which has 289 LUT-FF pairs over the

baseline scalar stage with the same size of data memory.

The last stage is the Writeback_Stage, which writes the

scalar/vector results into the VecLIW register file. It has

multiplexers to select the results come from the memory

In
st

ru
ct

io
n
 D

e
c
o
d

e
 E
x
ec

u
t

e W
ri

te
B

ac
k

 D
e
c
o
d

e

 E
x

e
c
u

t

e
 A
c
c
e
ss

 W
ri

te
 B

ac
k

F
et

ch

V
L

IW

M
em

o
ry

 D
e
c
o

d
e

 E
x

e
c
u

t

e
 W

ri
te

 B
ac

k

 D
e
c
o

d

e
 E
x

e
c
u

te

 W
ri

te
B

ac
k

Fig. 4. VecLIW pipeline.

TABLE II. FPGA STATISTICS FOR VECLIW PROCESSOR

 Statistics

 2x128x128-bit single-port RAM
 4x32x32-bit multiplier 2x128-bit latch
 6x32-bit adder 4x64-bit latch
 4x32-bit subtractor 128-bit comparator equal
 4-bit adder 32-bit comparator
 4-bit subtractor greatequal
 33x6-bit adder 32-bit comparator greater

HDL 3x64-bit adder 4x32-bit comparator less
Synthesis 3x64-bit up accumulator 32-bit comparator
Report 7x1-bit register lessequal

 7x128-bit register 2x4-bit comparator
 2-bit register lessequal
 20-bit register 76x6-bit comparator equal
 5x24-bit register 8x32-bit 64-to-1
 74x32-bit register multiplexer
 9x4-bit register 128x1-bit xor2
 72x1-bit latch 11-bit xor2
 Number of Slice Registers: 3992
Slice Logic Number of Slice LUTs: 14826
Utilization Number used as Logic: 14570

 Number used as Memory: 256
 Number of LUT Flip Flop pairs used: 17425
Slice Logic Number with an unused Flip Flop: 13433
Distribution Number with an unused LUT: 2599

 Number of fully used LUT-FF pairs: 1393
Timing Maximum Frequency: 75.825MHz

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 3, Issue 12, December 2014

1935

ISSN: 2278 – 909X All Rights Reserved © 2014 IJARECE

system (128-bit MemOut) or the results come from the ALUs
(4×32-bit AluOut). Depending on the opcodes, the register
destination field is specified by RD or RT (RdRtDes). Only
156 LUT -FF pairs are needed for VecLIW writeback stage
(see Table 1), which has 124 LUT-FF pairs over the
corresponding writeback stage of the baseline scalar
processor. The complexity of the VecLIW writeback stage is
488% (156/32) higher than the corresponding scalar writeback
stage because VecLIW writes back four elements per clock
cycle instead of one.

Table 2 summarizes the VecLIW complexity of VecLIW
pipeline shown in Figure 4. The total number of LUT-FF pairs
used is 17,425, where the number with an unused flip-flops is
13,433, the number with an unused LUT is 2,599, and the
number of fully used LUT-FF pairs is 1,393. The complexity
of four-issue VecLIW is 443% higher the single issue scalar
processor.

SIMULATION RESULTS:

V. CONCLUSIONS AND FUTURE WORK
This paper proposes new processor architecture called

VecLIW for accelerating data-parallel applications. VecLIW
executes multi-scalar and vector instructions on the same
parallel execution datapath. VecLIW has a modified five-stage
pipeline for (1) fetching 128-bit VLIW instruction (four
individual instructions), (2) decoding/reading operands of the
four instructions packed in VLIW, (3) executing four
operations on parallel execution units, (4) loading/storing 128-
bit (4×32-bit scalar/vector) data from/to data memory, and (5)
writing back 4×32 -bit scalar/vector results. Moreover, this
paper presents the FPGA implementation of our proposed
VecLIW. Our implementation of VecLIW using VHDL
targeting the Xilinx FPGA Virtex-5, XC5VLX110T-3FF1136
device. It requires 17,425 LUT-FF pairs, where the number
with an unused flip -flops is 13,433, the number with an
unused LUT is 2,599, and the number of fully used LUT-FF
pairs is 1,393. The complexity of four-issue VecLIW is 443%
higher the single issue scalar processor. In the future, the
performance of our proposed VecLIW will be evaluated on
scientific and multimedia kernels/applications.

REFERENCES

[1] J. Hennessay and D. Patterson, Computer Architecture A Quantitative

Approach, 5th ed, Morgan-Kaufmann, September 2011.
[2] J. Mike, Superscalar Microprocessor Design, Prentice Hall (Prentice

Hall Series in Innovative Technology), 1991.
[3] J. Smith and G. Sohi, “The microarchitecture of superscalar processors,”

Proceedings of the IEEE, vol. 83, no. 12, pp. 1609-1624, December
1995.

[4] J. Fisher, “VLIW architectures and the ELI-512,” Proc. 10th
International Symposium on Computer Architecture, Stockholm,
Sweden, pp. 140-150, June 1983.

[5] J. Fisher, P. Faraboschi, and C. Young, Embedded Computing: A VLIW
Approach to Architecture, Compilers and Tools, Morgan Kaufmann,
2004.

[6] Philips, Inc., An Introduction to Very-Long Instruction Word (VLIW)

Computer Architecture, Philips Semiconductors, 1997.
[7] R. Espasa, M. Valero, and J. Smith, “Vector architectures: past, present

and future,” Proc. 2nd International Conference on Supercomputing,
Melbourne, Australia, pp. 425-432, July 1998.

[8] F. Quintana, R. Espasa, and M. Valero, “An ISA comparison between
superscalar and vector processors,” in VECPAR, vol. 1573, Springer-
Verlag London, pp. 548-560, 1998.

[9] J. Smith, “The best way to achieve vector-like performance?,” Keynote
Speech, in 21st International Symposium on Computer Architecture,
Chicago, IL, April 1994.

[10] C. Kozyrakis and D. Patterson, “Vector vs. superscalar and vliw
architectures for embedded multimedia benchmarks,” Proc. 35th
International Symposium on Microarchitecture, Istanbul, Turkey, pp.
283-293, November 2002.

[11] K. Asanovic, Vector Microprocessors, Ph.D. Thesis, Computer Science
Division, University of California at Berkeley, 1998.

[12] S. Kaxiras, “Distributed vector architectures,” Journal of Systems
Architecture, Elsevier Science B.V., vol. 46, no. 11, pp. 973-990, 2000.

[13] C. Kozyrakis, Scalable Vector Media-processors for Embedded
Systems, Ph.D. Thesis, Computer Science Division, University of
California at Berkeley, 2002.

[14] R. Krashinsky, Vector-Thread Architecture and Implementation, Ph.D.
Thesis, Massachusetts Institute of Technology, 2007.

[15] J. Gebis, Low-complexity Vector Microprocessor Extensions, Ph.D.
thesis, University of California at Berkeley, 2008.

[16] C. Batten, Simplified Vector-Thread Architectures for Flexible and
Efficient Data-Parallel Accelerators, Ph.D. Thesis, Massachusetts
Institute of Technology, 2010.

[17] P. Yiannacouras, J. Steffan, and J. Rose, “Portable, flexible, and scalable
soft vector processors,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 20, no. 8, pp. 1429-1442, August 2012.

[18] M. Gschwind, H. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T.
Yamazaki, “Synergistic processing in Cell's multicore architecture,”
Journal IEEE Micro, vol. 26, no. 2, pp. 10-24, March 2006.

[19] T. Zeiser, G. Hager, and G. Wellein, “Performance results from the NEC
SX-9,” Proc. IEEE International Symposium on Parallel & Distributed
Processing, IPDPS-2009, pp. 1-8, 2009.

[20] E. Salami and M. Valero “A vector-μSIMD-VLIW architecture for
multimedia applications,” Proc. IEEE International Conference on
Parallel Processing, ICPP-2005, pp. 69-77, 2005.

[21] T. Wada, S. Ishiwata, K. Kimura, K. Nakanishi, M. Sumiyoshi, T.
Miyamori, and M. Nakagawa, “A VLIW vector media coprocessor with
cascaded SIMD ALUs,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 17, no. 9, pp. 1285-1296, 2009.

[22] G. Amdahl, “Validity of the single-processor approach to achieving
large scale computing capabilities,” Proc. AFIPS 1967 Spring Joint
Computer Conference, Atlantic City, New Jersey, AFIPS Press, vol. 30,
pp. 483-485, April 1967.

[23] G. Kane, MIPS RISC Architecture (R2000/R3000), Prentice Hall, 1989.
[24] MIPS32 Architecture For Programmers Volume II: The MIPS32

Instruction Set, MIPS, Revision 0.95, 2011. Available at:
http://www.cs.cornell.edu/courses/cs3410/2011sp/MIPS Vol2.pdf.

[25] D. Patterson and J. Hennessy, Computer Organization and Design: The
Hardware/Software Interface, 4th ed, Morgan Kaufman, December
2011.

[26] A. Cosoroaba and F. Rivoallon, “Achieving higher system performance
with the Virtex-5 family of FPGAs,” White Paper: Virtex-5 Family of
FPGAs, Xilinx WP245 (v1.1.1), July 2006.

[27] A. Percey, “Advantages of the Virtex-5 FPGA 6-Input LUT
architecture,” White Paper: Virtex-5 FPGAs, Xilinx WP284 (v1.0),
December 2007.

[28] Virtex-5 FPGA User Guide, UG190 (v5.4), March 2012.
http://www.xilinx.com/support/documentation/user_guides/ug190.pdf.

