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ABSTRACT:  

With the need of application, chip with a single 

processor canôt meet the need of more and more 

complex computational task. We are able to integrate 

multiple processors on a chip. Multi -Processor System 

on Chip (MPSoC) which gives a solution to this requires 

efficient on-chip communication architectures to 

support high data bandwidth and increase parallelism. 

The traditional form of interconnection between 

multiple cores usually is on-chip bus (such as AHB and 

Avalon), which determiners the performance of MPSoC. 

However, traditional buses only allow one master to 

access one slave at one time, which badly restricts the 

performance of the whole system. 

In this paper we focus on the design and implementation 

of a multi slave interface for AXI bus, which translates 

data in burst, maximal length of which is up to 16 

transactions. Besides, it only needs to translate the head 

address of the burst in this transaction. Owing to that 

feature, multiple masters accessing multiple slaves at 

one time becomes possible in sharing address bus 

architecture. Besides, there are five independent data 

transfer channels, making it translate data in high speed 

and efficiently. 
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I.  INTRODUCTION  

A system on a chip or system on chip (SoC) is an 

integrated circuit (IC) that integrates all components of a 

computer or other electronic system into a single chip. 

These SoCs typically consist of several complex 

heterogeneous components such as programmable 

processors, dedicated (custom) hardware to perform 

specific tasks, on-chip memories, input-output interfaces, 

and an on-chip communication architecture that serves as 

the interconnection fabric for communication between 

these components. The dual forces of advances in 

technology, coupled with an insatiable demand for 

convergent computing devices (e.g., smart phones that 

include cameras, MP3 players, GPS devices) have 

influenced the need for complex chips that incorporate 

multiple processors dedicated for specific computational 

needs [1]. These emerging multiprocessor system-on-chip 

(MPSoC) designs typically consist of multiple 

microprocessors, and tens to hundreds of additional 

components. These components are integrated via an on-

chip bus architecture consisting of multiple shared 

interconnected buses [2-4]. And also each of these 

components have to be interfaced to the outside world 

consisting of a set of pins that are responsible for sending 

/receiving addresses, data and control information to/from 

other components. The choice of pins at the interface is 

governed by the particular bus protocol of the 

communication architecture. In order to seamlessly 

integrate all these components into a SoC design, it is 

necessary to have some kind of a standard interface 

definition for components. Without a standard interface 

definition, the component interfaces will not be 

compatible with the bus architecture implementation, and 

consequently will not function correctly. 

To speed up SoC integration and promote IP 

reuse over several designs, several bus-based 

communication architecture standards have emerged over 

the past several years. A communication architecture 

standard defines a specific data transfer protocol, which in 

turn decides the number and functionality of the pins at 

the interface of the components. Usually, bus-based 

communication architecture standards define the interface 

between components and the bus architecture, as well as 

the bus architecture that implements the data transfer 

protocol. 

A. PRIOR WORK  

 Development of Network-on-Chip has increased 

over a past decade so has the evolution of AMBA 

[5].AMBA has become the de-facto standard for on-chip 

communication. The specification has been downloaded 

by over 30,000 engineers worldwide and is estimated to 

be implemented in billions of SoC devices. The first 

AMBA specifications, ASB and APB, were released in 

1995 [6].In 2003, the most significant step was made in 

the AMBA roadmap, with the addition of AXI. AXI 

provides a high performance, high speed interface and 

interconnect solution that uses a simple uni-directional 

channel based interface. The nature of the interface allows 

simple cross domain crossing and support for register 

slices which ensures timing closure even in the most 

complex of SoC system designs [7]. 

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Computer


International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)  

Volume 4, Issue 1, January 2015 

 

50 
ISSN: 2278 ï 909X All Rights Reserved © 2015 IJARECE 

At the present time, there are not many AXI 

protocol [8] based designs on the market. In[9] and 

[10],the authors propose the feature and application of 

AXI bus interface protocol, but they do not present the 

design and implementation of AXI bus, nor do they give a 

system design of AXI architecture based. In [11], the 

author presents the design and implementation of AXI bus 

in detail, but he doesnôt give the system implementation 

and performance evaluation of AXI based design.  

In [12], the authors propose a MPSOC prototype 

on a FPGA based platform, and use a set of transaction 

generators (TGs) to generate both stochastic traffic and 

the predefined real application traffic patterns. That way 

can explore different MPSOC architectures fast, but it 

canôt evaluate the performance of the entire MPSOC 

accurately under real application and the results are of 

little practical value. 

` In [13], one MPSoC of 4 ARM cores is 

implemented on FPGA and the communicate network is 

Hierarchy-AHB bus. But it canôt give perfect parallelism 

because of its AHB bus which can only allow one master 

to access slave at any time.  

In [14], they have implemented a hardware 

interface for the AMBA AHB and APB buses. The 

interface between high-performance AMBA bus AHB 

and low performance AMBA bus APB is created in this 

work. Then two target devices register and RAM are 

connected to APB side to perform read/write operation 

through the designed interface commanding from AHB 

side. 

B. OBJECTIVES 

Our aim is to implement a multi-slave interface for 

AXI bus which is more flexible when compared with the 

other AMBA bus architecture. For any transaction 

(read/write) only the starting address of the data is given, 

thereby increasing the processor speed. 

ü Implement AXI slave interface. 

ü The interface block receives the data from the 

AXI bus and forwards to the device which are 

connected to the interface block. 

ü Read and write transactions are carried out 

simultaneously. 

ü Backward-compatible with existing AHB and 

APB interfaces. 

II.  AMBA AXI  

The AMBA 3.0 bus architecture specification 

introduces the Advanced eXtensible Interface (AXI) bus 

that extends the AHB bus with advanced features to 

support the next generation of high performance MPSoC 

designs. The goals of the AXI bus protocol include 

supporting high frequency operation without using 

complex bridges, flexibility in meeting the interface, and 

performance requirements of a diverse set of components, 

and backward compatibility with AMBA 2.0 AHB and 

APB interfaces. 

A. ADVANCED EXTENSIBLE INTERFACE  

The AXI bus standard proposes a burst-based, 

pipelined data transfer bus, similar to the AHB bus, but 

with additional advanced features and enhancements. The 

AXI specification describes a high level channel-based 

architecture for communicating between masters and 

slaves on a bus. Five separate channels are defined: read 

address, read data, write address, write data and write 

response [31]. The AXI protocol enables: 

ü Address information to be issued ahead of the 

actual data transfer. 

ü Support for multiple outstanding transactions. 

ü Support for out-of-order completion of 

transactions. 

Figure 1show how a read transaction uses the read 

address and read data channels. The address and control 

information for read transfer is sent by the master on the 

read channel, while the read data and response 

information from the slave is received on the read data 

channel. 

 

Figure1: Channel Architecture of Reads. 

Figure 2 shows how a write transaction uses the 

write address, write data, and write response channels. 

The address and control information for a write transfer is 

sent on the write address channel, while the write data is 

transmitted on the write data channel. 
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Figure 2: Channel Architecture of Writes. 

III.  IMPLEMEN TATION OF MULTI -

SLAVE INTERFACE  

 

A. PROPOSED MODEL 

The main objective of the project is to implement a 

slave interface for AXI bus. Figure 3 gives the block 

diagram of the proposed model. Here the ARM processor 

(32-bit) acts as the master and the slaves that are 

considered here is memory and register bank. It employs 

the pipelined burst transfer mode for data transfer. The 

address and data buses are 32-bit wide. 

 

 

Figure 3: Block diagram. 

 

Figure 4: Different channels of AXI bus. 

Write Address Channel 

The master can assert the AWVALID signal 

only when it drives valid address and control information. 

It must remain asserted until the slave accepts the address 

and control information and asserts the associated 

AWREADY signal. The default value of AWREADY 

can be either HIGH or LOW. The recommended default 

value is HIGH, although if AWREADY is HIGH then the 

slave must be able to accept any valid address that is 

presented to it. 

A default AWREADY value of LOW is possible 

but not recommended, because it implies that the transfer 

takes at least two cycles, one to assert AWVALID and 

another to assert AWREADY . 

Write Data Channel 

During a write burst, the master can assert the 

WVALID signal only when it drives valid write data. 

WVALID must remain asserted until the slave accepts 

the write data and asserts the WREADY signal. The 

default value of WREADY can be HIGH, but only if the 

slave can always accept write data in a single cycle. The 

master must assert the WLAST signal when it drives the 

final write transfer in the burst. When WVALID is LOW, 

the WSTRB[3:0] signals can take any value, although it 

is recommended that they are either driven LOW or held 

at their previous value. 

Write Response Channel 

The slave can assert the BVALID signal only 

when it drives a valid write response .BVALID must 

remain asserted until the master accepts the write 

response and asserts BREADY . The default value of 

BREADY can be HIGH, but only if the master can 

always accept a write response in a single cycle. 

Read Address Channel 

The master can assert the ARVALID signal only 

when it drives valid address and control information. It 

must remain asserted until the slave accepts the address 

and control information and asserts the associated 

ARREADY signal. The default value of ARREADY can 

be either HIGH or LOW. The recommended default value 

is HIGH, although if ARREADY is HIGH then the slave 

must be able to accept any valid address that is presented 

to it. A default ARREADY value of LOW is possible but 

not recommended, because it implies that the transfer 

takes at least two cycles, one to assert ARVALID and 

another to assert ARREADY . 

Read Data Channel 

The slave can assert the RVALID signal only 

when it drives valid read data. RVALID must remain 
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asserted until the master accepts the data and asserts the 

RREADY signal. Even if a slave has only one source of 

read data, it must assert the RVALID signal only in 

response to a request for the data. The master interface 

uses the RREADY signal to indicate that it accepts the 

data. The default value of RREADY can be HIGH, but 

only if the master is able to accept read data immediately, 

whenever it performs a read transaction. The slave must 

assert the RLAST signal when it drives the final read 

transfer in the burst. 

B. DEPENDENCIES BETWEEN CHANNEL 

HANDSHAKE SIGNALS  

To prevent a deadlock situation, we must 

observe the dependencies that exist between the 

handshake signals. 

In any transaction: 

ü the VALID signal of one AXI component must 

not be dependent on the READY signal of the 

other component in the transaction 

ü the READY signal can wait for assertion of the 

VALID signal. 

Figure 5 and Figure 6 show the handshake signal 

dependencies. The single-headed arrows point to signals 

that can be asserted before or after the previous signal is 

asserted. Double-headed arrows point to signals that must 

be asserted only after assertion of the previous 

signal.Figure4.6 shows that, in a read transaction: 

ü the slave can wait for ARVALID to be asserted 

before it asserts ARREADY  

ü the slave must wait for both ARVALID and 

ARREADY to be asserted before it starts to 

return read data by asserting RVALID . 

 

Figure5: Read Transaction Handshake Dependencies. 

Figure6 shows that, in a write transaction: 

ü the master must not wait for the slave to assert 

AWREADY or WREADY before asserting 

AWVALID or WVALID  

ü the slave can wait for AWVALID or WVALID , 

or both, before asserting AWREADY  

ü the slave can wait for AWVALID or WVALID , 

or both, before asserting WREADY  

ü the slave must wait for both WVALID and 

WREADY to be asserted before asserting 

BVALID . 

 

Figure6:Write Transaction Handshake Dependencies. 

C.  ADDRESSING OPTIONS 

The AXI protocol is burst-based, and the master 

begins each burst by driving transfer control information 

and the address of the first byte in the transfer. As the 

burst transaction progresses, it is the responsibility of the 

slave to calculate the addresses of subsequent transfers in 

the burst. Bursts must not cross 4KB boundaries to 

prevent them from crossing boundaries between slaves 

and to limit the size of the address incrementer is required 

within slaves. 

 

Burst Length 

The AWLEN or ARLEN signal specifies the 

number of data transfers that occur within each burst. 

Each burst can be 1-16 transfers long. For wrapping 

bursts, the length of the burst must be 2, 4, 8, or 16 

transfers. Every transaction must have the number of 

transfers specified by ARLEN or AWLEN . No 

component can terminate a burst early to reduce the 

number of data transfers. During a write burst, the master 

can disable further writing by deasserting all the write 

strobes, but it must complete the remaining transfers in 

the burst. During a read burst, the master can discard 

further read data, but it must complete the remaining 

transfers in the burst. 

Burst Size 

The ARSIZE or AWSIZE signal specifies the 

maximum number of data bytes to transfer in each beat, 

or data transfer, within a burst. The AXI determines from 

the transfer address which byte lanes of the data bus to 

use for each transfer. For incrementing or wrapping bursts 

with transfer sizes narrower than the data bus, data 

transfers are on different byte lanes for each beat of the 

burst. The address of a fixed burst remains constant, and 

every transfer uses the same byte lanes. The size of any 
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transfer must not exceed the data bus width of the 

components in the transaction. 

Burst Type 

The AXI protocol defines three burst types: 

¶ Fixed burst 

¶ Incrementing burst 

¶ Wrapping burst 

 Fixed burst 

In a fixed burst, the address remains the same for 

every transfer in the burst. This burst type is for repeated 

accesses to the same location such as when loading or 

emptying a peripheral FIFO. 

 Incrementing burst 

In an incrementing burst, the address for each 

transfer in the burst is an increment of the previous 

transfer address. The increment value depends on the size 

of the transfer. For example, the address for each transfer 

in a burst with a size of four bytes is the previous address 

plus four. 

 

Wrapping burst  

A wrapping burst is similar to an incrementing 

burst, in that the address for each transfer in the burst is 

an increment of the previous transfer address. However, 

in a wrapping burst the address wraps around to a lower 

address when a wrap boundary is reached. The wrap 

boundary is the size of each transfer in the burst 

multiplied by the total number of transfers in the burst. 

IV.  SIMULATION RESULT S 

Verilog code is written for the read and write 

transactions that happen in burst format. The burst 

transactions mainly occur in three ways, namely fixed, 

increment and wrap. The Verilog code written for entire 

design is compiled in Modelsim simulator to check for the 

errors. 

 

Figure 7: Read Burst Transactions. 

Read Burst 

Figure 7 shows a read burst of four transfers. 

Here, the master drives the address, and the slave accepts 

it one cycle later. After the address appears on the address 

bus, the data transfer occurs on the read data channel. The 

slave keeps the VALID signal LOW until the read data is 

available. For the final data transfer of the burst, the slave 

asserts the RLAST signal to show that the last data item 

is being transferred. 

 

Write Burst  

 

Figure 8 shows a write transaction. The process 

starts when the master sends an address and control 

information on the write address channel. The master then 

sends each item of write data over the write data channel. 

When the master sends the last data item, the WLAST 

signal goes HIGH. When the slave has accepted all the 

data items, it drives a write response back to the master to 

indicate that the write transaction is complete. 

 

 

Figure 8: Write Burst Transaction. 

Figures 9 -10 shows the write transaction waveforms for 

memory in all three burst modes. 

Figures 12-17 shows the write transaction waveforms for 

register bank in all three burst modes. 

Figures 18-22 shows the read transaction waveforms for 

memory in all three burst modes. 
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Figures 23-27 shows the read transaction waveforms for 

register bank in all three burst modes. 

V. CONCLUSION AND FUTURE WORK  

The AMBA AXI specification represents a major 

evolutionary step in interconnect technology for on-chip 

system design. The result is an interconnect architecture 

suitable for FPGAs and ASICs. 

Here we design and implement AXI interface for 

two slaves i.e., internal memory and register bank with 

one master. The address/data is transferred from master to 

slave using write address/data channel and read the data 

from slave using read data channel. Here the read and 

write transactions occur simultaneously because there are 

five different channels for read and write and no 

multiplexing is required. The entire design is described 

using Verilog HDL. The functionality of the design is 

tested by writing a testbench. This Verilog description is 

simulated using Modelsim simulator. The waveforms are 

analyzed where we can see the read and write burst 

transactions in fixed, increment and wrap modes. 

In this design, there are five independent transfer 

channels which make multiple masters access multiple 

slaves at the same time and gain a perfect parallelism 

performance in MPSoC design. 
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Figure 9: Simulation Waveform for Memory Write: Fixed 

Burst. 
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Figure 10: Simulation Waveform for Memory Write: 

Increment Burst. 

 

Figure 11: Simulation Waveform for Memory Write: 

Wrap Burst. 

 

Figure 12: Simulation Waveforms for Register Writes: 

Fixed Burst ï Address and Data before Transfer. 

 

Figure 13: Simulation Waveforms for Register Writes: 

Fixed Burstï Address and Data after Transfer. 

 

Figure 14: Simulation Waveform for Register Writes: 

Increment Burst ï Address and Data before Transfer. 

 

Figure 15: Simulation Waveform for Register Writes: 

Increment Burst ï Address and Data after Transfer. 

 

Figure 16: Simulation Waveform for Register Writes: 

Wrap Burst ï Address and Data before Transfer. 

 

Figure 17: Simulation Waveform for Register Writes: 

Wrap Burst ï Address and Data after Transfer. 

 

Figure 18: Simulation Waveform for Memory Read: 

Wrap Burst. 
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Figure 19: Simulation Waveform for Memory Read: 

Fixed Burst ï Address and Data before Transfer. 

 

Figure 20: Simulation Waveform for Memory Read: 

Fixed Burst ï Address and Data after Transfer. 

 

Figure 21: Simulation Waveform for Memory Read: 

Increment Burst ï Address and Data before Transfer. 

 

 

 

Figure 22: Simulation Waveform for Memory Read: 

Increment Burst ï Address and Data after Transfer. 

 

Figure 23: Simulation Waveform For Register Reads: 

Fixed Burst -Address and Data before Transfer. 

 

Figure 24: Simulation Waveform For Register Reads: 

Fixed Burst ïAddress and Data after Transfer. 

 

Figure 25: Simulation Waveform For Register Reads: 

Increment Burst- Address and Databefore Transfer. 

 

Figure 26: Simulation Waveform For Register Reads: 

Increment Burst-Address and Data after Transfer. 


