
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 4, Issue 1, January 2015

49
ISSN: 2278 ï 909X All Rights Reserved © 2015 IJARECE

IMPLEMENTATION OF MULTI -SLAVE INTERFACE FOR AXI BUS

Anitha.H.T
[1]

,Manasa B T
[2]

Visvesvaraya Technology University

Department of Electronics and Communication

Sambhram Institute of Technology, Bangalore

ABSTRACT:

With the need of application, chip with a single

processor canôt meet the need of more and more

complex computational task. We are able to integrate

multiple processors on a chip. Multi -Processor System

on Chip (MPSoC) which gives a solution to this requires

efficient on-chip communication architectures to

support high data bandwidth and increase parallelism.

The traditional form of interconnection between

multiple cores usually is on-chip bus (such as AHB and

Avalon), which determiners the performance of MPSoC.

However, traditional buses only allow one master to

access one slave at one time, which badly restricts the

performance of the whole system.

In this paper we focus on the design and implementation

of a multi slave interface for AXI bus, which translates

data in burst, maximal length of which is up to 16

transactions. Besides, it only needs to translate the head

address of the burst in this transaction. Owing to that

feature, multiple masters accessing multiple slaves at

one time becomes possible in sharing address bus

architecture. Besides, there are five independent data

transfer channels, making it translate data in high speed

and efficiently.

Key words: MPSoC, AMBA, AHB, AXI. Multi -slave.

I. INTRODUCTION

A system on a chip or system on chip (SoC) is an

integrated circuit (IC) that integrates all components of a

computer or other electronic system into a single chip.

These SoCs typically consist of several complex

heterogeneous components such as programmable

processors, dedicated (custom) hardware to perform

specific tasks, on-chip memories, input-output interfaces,

and an on-chip communication architecture that serves as

the interconnection fabric for communication between

these components. The dual forces of advances in

technology, coupled with an insatiable demand for

convergent computing devices (e.g., smart phones that

include cameras, MP3 players, GPS devices) have

influenced the need for complex chips that incorporate

multiple processors dedicated for specific computational

needs [1]. These emerging multiprocessor system-on-chip

(MPSoC) designs typically consist of multiple

microprocessors, and tens to hundreds of additional

components. These components are integrated via an on-

chip bus architecture consisting of multiple shared

interconnected buses [2-4]. And also each of these

components have to be interfaced to the outside world

consisting of a set of pins that are responsible for sending

/receiving addresses, data and control information to/from

other components. The choice of pins at the interface is

governed by the particular bus protocol of the

communication architecture. In order to seamlessly

integrate all these components into a SoC design, it is

necessary to have some kind of a standard interface

definition for components. Without a standard interface

definition, the component interfaces will not be

compatible with the bus architecture implementation, and

consequently will not function correctly.

To speed up SoC integration and promote IP

reuse over several designs, several bus-based

communication architecture standards have emerged over

the past several years. A communication architecture

standard defines a specific data transfer protocol, which in

turn decides the number and functionality of the pins at

the interface of the components. Usually, bus-based

communication architecture standards define the interface

between components and the bus architecture, as well as

the bus architecture that implements the data transfer

protocol.

A. PRIOR WORK

 Development of Network-on-Chip has increased

over a past decade so has the evolution of AMBA

[5].AMBA has become the de-facto standard for on-chip

communication. The specification has been downloaded

by over 30,000 engineers worldwide and is estimated to

be implemented in billions of SoC devices. The first

AMBA specifications, ASB and APB, were released in

1995 [6].In 2003, the most significant step was made in

the AMBA roadmap, with the addition of AXI. AXI

provides a high performance, high speed interface and

interconnect solution that uses a simple uni-directional

channel based interface. The nature of the interface allows

simple cross domain crossing and support for register

slices which ensures timing closure even in the most

complex of SoC system designs [7].

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Computer

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 4, Issue 1, January 2015

50
ISSN: 2278 ï 909X All Rights Reserved © 2015 IJARECE

At the present time, there are not many AXI

protocol [8] based designs on the market. In[9] and

[10],the authors propose the feature and application of

AXI bus interface protocol, but they do not present the

design and implementation of AXI bus, nor do they give a

system design of AXI architecture based. In [11], the

author presents the design and implementation of AXI bus

in detail, but he doesnôt give the system implementation

and performance evaluation of AXI based design.

In [12], the authors propose a MPSOC prototype

on a FPGA based platform, and use a set of transaction

generators (TGs) to generate both stochastic traffic and

the predefined real application traffic patterns. That way

can explore different MPSOC architectures fast, but it

canôt evaluate the performance of the entire MPSOC

accurately under real application and the results are of

little practical value.

` In [13], one MPSoC of 4 ARM cores is

implemented on FPGA and the communicate network is

Hierarchy-AHB bus. But it canôt give perfect parallelism

because of its AHB bus which can only allow one master

to access slave at any time.

In [14], they have implemented a hardware

interface for the AMBA AHB and APB buses. The

interface between high-performance AMBA bus AHB

and low performance AMBA bus APB is created in this

work. Then two target devices register and RAM are

connected to APB side to perform read/write operation

through the designed interface commanding from AHB

side.

B. OBJECTIVES

Our aim is to implement a multi-slave interface for

AXI bus which is more flexible when compared with the

other AMBA bus architecture. For any transaction

(read/write) only the starting address of the data is given,

thereby increasing the processor speed.

ü Implement AXI slave interface.

ü The interface block receives the data from the

AXI bus and forwards to the device which are

connected to the interface block.

ü Read and write transactions are carried out

simultaneously.

ü Backward-compatible with existing AHB and

APB interfaces.

II. AMBA AXI

The AMBA 3.0 bus architecture specification

introduces the Advanced eXtensible Interface (AXI) bus

that extends the AHB bus with advanced features to

support the next generation of high performance MPSoC

designs. The goals of the AXI bus protocol include

supporting high frequency operation without using

complex bridges, flexibility in meeting the interface, and

performance requirements of a diverse set of components,

and backward compatibility with AMBA 2.0 AHB and

APB interfaces.

A. ADVANCED EXTENSIBLE INTERFACE

The AXI bus standard proposes a burst-based,

pipelined data transfer bus, similar to the AHB bus, but

with additional advanced features and enhancements. The

AXI specification describes a high level channel-based

architecture for communicating between masters and

slaves on a bus. Five separate channels are defined: read

address, read data, write address, write data and write

response [31]. The AXI protocol enables:

ü Address information to be issued ahead of the

actual data transfer.

ü Support for multiple outstanding transactions.

ü Support for out-of-order completion of

transactions.

Figure 1show how a read transaction uses the read

address and read data channels. The address and control

information for read transfer is sent by the master on the

read channel, while the read data and response

information from the slave is received on the read data

channel.

Figure1: Channel Architecture of Reads.

Figure 2 shows how a write transaction uses the

write address, write data, and write response channels.

The address and control information for a write transfer is

sent on the write address channel, while the write data is

transmitted on the write data channel.

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 4, Issue 1, January 2015

51
ISSN: 2278 ï 909X All Rights Reserved © 2015 IJARECE

Figure 2: Channel Architecture of Writes.

III. IMPLEMEN TATION OF MULTI -

SLAVE INTERFACE

A. PROPOSED MODEL

The main objective of the project is to implement a

slave interface for AXI bus. Figure 3 gives the block

diagram of the proposed model. Here the ARM processor

(32-bit) acts as the master and the slaves that are

considered here is memory and register bank. It employs

the pipelined burst transfer mode for data transfer. The

address and data buses are 32-bit wide.

Figure 3: Block diagram.

Figure 4: Different channels of AXI bus.

Write Address Channel

The master can assert the AWVALID signal

only when it drives valid address and control information.

It must remain asserted until the slave accepts the address

and control information and asserts the associated

AWREADY signal. The default value of AWREADY

can be either HIGH or LOW. The recommended default

value is HIGH, although if AWREADY is HIGH then the

slave must be able to accept any valid address that is

presented to it.

A default AWREADY value of LOW is possible

but not recommended, because it implies that the transfer

takes at least two cycles, one to assert AWVALID and

another to assert AWREADY .

Write Data Channel

During a write burst, the master can assert the

WVALID signal only when it drives valid write data.

WVALID must remain asserted until the slave accepts

the write data and asserts the WREADY signal. The

default value of WREADY can be HIGH, but only if the

slave can always accept write data in a single cycle. The

master must assert the WLAST signal when it drives the

final write transfer in the burst. When WVALID is LOW,

the WSTRB[3:0] signals can take any value, although it

is recommended that they are either driven LOW or held

at their previous value.

Write Response Channel

The slave can assert the BVALID signal only

when it drives a valid write response .BVALID must

remain asserted until the master accepts the write

response and asserts BREADY . The default value of

BREADY can be HIGH, but only if the master can

always accept a write response in a single cycle.

Read Address Channel

The master can assert the ARVALID signal only

when it drives valid address and control information. It

must remain asserted until the slave accepts the address

and control information and asserts the associated

ARREADY signal. The default value of ARREADY can

be either HIGH or LOW. The recommended default value

is HIGH, although if ARREADY is HIGH then the slave

must be able to accept any valid address that is presented

to it. A default ARREADY value of LOW is possible but

not recommended, because it implies that the transfer

takes at least two cycles, one to assert ARVALID and

another to assert ARREADY .

Read Data Channel

The slave can assert the RVALID signal only

when it drives valid read data. RVALID must remain

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 4, Issue 1, January 2015

52
ISSN: 2278 ï 909X All Rights Reserved © 2015 IJARECE

asserted until the master accepts the data and asserts the

RREADY signal. Even if a slave has only one source of

read data, it must assert the RVALID signal only in

response to a request for the data. The master interface

uses the RREADY signal to indicate that it accepts the

data. The default value of RREADY can be HIGH, but

only if the master is able to accept read data immediately,

whenever it performs a read transaction. The slave must

assert the RLAST signal when it drives the final read

transfer in the burst.

B. DEPENDENCIES BETWEEN CHANNEL

HANDSHAKE SIGNALS

To prevent a deadlock situation, we must

observe the dependencies that exist between the

handshake signals.

In any transaction:

ü the VALID signal of one AXI component must

not be dependent on the READY signal of the

other component in the transaction

ü the READY signal can wait for assertion of the

VALID signal.

Figure 5 and Figure 6 show the handshake signal

dependencies. The single-headed arrows point to signals

that can be asserted before or after the previous signal is

asserted. Double-headed arrows point to signals that must

be asserted only after assertion of the previous

signal.Figure4.6 shows that, in a read transaction:

ü the slave can wait for ARVALID to be asserted

before it asserts ARREADY

ü the slave must wait for both ARVALID and

ARREADY to be asserted before it starts to

return read data by asserting RVALID .

Figure5: Read Transaction Handshake Dependencies.

Figure6 shows that, in a write transaction:

ü the master must not wait for the slave to assert

AWREADY or WREADY before asserting

AWVALID or WVALID

ü the slave can wait for AWVALID or WVALID ,

or both, before asserting AWREADY

ü the slave can wait for AWVALID or WVALID ,

or both, before asserting WREADY

ü the slave must wait for both WVALID and

WREADY to be asserted before asserting

BVALID .

Figure6:Write Transaction Handshake Dependencies.

C. ADDRESSING OPTIONS

The AXI protocol is burst-based, and the master

begins each burst by driving transfer control information

and the address of the first byte in the transfer. As the

burst transaction progresses, it is the responsibility of the

slave to calculate the addresses of subsequent transfers in

the burst. Bursts must not cross 4KB boundaries to

prevent them from crossing boundaries between slaves

and to limit the size of the address incrementer is required

within slaves.

Burst Length

The AWLEN or ARLEN signal specifies the

number of data transfers that occur within each burst.

Each burst can be 1-16 transfers long. For wrapping

bursts, the length of the burst must be 2, 4, 8, or 16

transfers. Every transaction must have the number of

transfers specified by ARLEN or AWLEN . No

component can terminate a burst early to reduce the

number of data transfers. During a write burst, the master

can disable further writing by deasserting all the write

strobes, but it must complete the remaining transfers in

the burst. During a read burst, the master can discard

further read data, but it must complete the remaining

transfers in the burst.

Burst Size

The ARSIZE or AWSIZE signal specifies the

maximum number of data bytes to transfer in each beat,

or data transfer, within a burst. The AXI determines from

the transfer address which byte lanes of the data bus to

use for each transfer. For incrementing or wrapping bursts

with transfer sizes narrower than the data bus, data

transfers are on different byte lanes for each beat of the

burst. The address of a fixed burst remains constant, and

every transfer uses the same byte lanes. The size of any

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 4, Issue 1, January 2015

53
ISSN: 2278 ï 909X All Rights Reserved © 2015 IJARECE

transfer must not exceed the data bus width of the

components in the transaction.

Burst Type

The AXI protocol defines three burst types:

¶ Fixed burst

¶ Incrementing burst

¶ Wrapping burst

 Fixed burst

In a fixed burst, the address remains the same for

every transfer in the burst. This burst type is for repeated

accesses to the same location such as when loading or

emptying a peripheral FIFO.

 Incrementing burst

In an incrementing burst, the address for each

transfer in the burst is an increment of the previous

transfer address. The increment value depends on the size

of the transfer. For example, the address for each transfer

in a burst with a size of four bytes is the previous address

plus four.

Wrapping burst

A wrapping burst is similar to an incrementing

burst, in that the address for each transfer in the burst is

an increment of the previous transfer address. However,

in a wrapping burst the address wraps around to a lower

address when a wrap boundary is reached. The wrap

boundary is the size of each transfer in the burst

multiplied by the total number of transfers in the burst.

IV. SIMULATION RESULT S

Verilog code is written for the read and write

transactions that happen in burst format. The burst

transactions mainly occur in three ways, namely fixed,

increment and wrap. The Verilog code written for entire

design is compiled in Modelsim simulator to check for the

errors.

Figure 7: Read Burst Transactions.

Read Burst

Figure 7 shows a read burst of four transfers.

Here, the master drives the address, and the slave accepts

it one cycle later. After the address appears on the address

bus, the data transfer occurs on the read data channel. The

slave keeps the VALID signal LOW until the read data is

available. For the final data transfer of the burst, the slave

asserts the RLAST signal to show that the last data item

is being transferred.

Write Burst

Figure 8 shows a write transaction. The process

starts when the master sends an address and control

information on the write address channel. The master then

sends each item of write data over the write data channel.

When the master sends the last data item, the WLAST

signal goes HIGH. When the slave has accepted all the

data items, it drives a write response back to the master to

indicate that the write transaction is complete.

Figure 8: Write Burst Transaction.

Figures 9 -10 shows the write transaction waveforms for

memory in all three burst modes.

Figures 12-17 shows the write transaction waveforms for

register bank in all three burst modes.

Figures 18-22 shows the read transaction waveforms for

memory in all three burst modes.

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 4, Issue 1, January 2015

54
ISSN: 2278 ï 909X All Rights Reserved © 2015 IJARECE

Figures 23-27 shows the read transaction waveforms for

register bank in all three burst modes.

V. CONCLUSION AND FUTURE WORK

The AMBA AXI specification represents a major

evolutionary step in interconnect technology for on-chip

system design. The result is an interconnect architecture

suitable for FPGAs and ASICs.

Here we design and implement AXI interface for

two slaves i.e., internal memory and register bank with

one master. The address/data is transferred from master to

slave using write address/data channel and read the data

from slave using read data channel. Here the read and

write transactions occur simultaneously because there are

five different channels for read and write and no

multiplexing is required. The entire design is described

using Verilog HDL. The functionality of the design is

tested by writing a testbench. This Verilog description is

simulated using Modelsim simulator. The waveforms are

analyzed where we can see the read and write burst

transactions in fixed, increment and wrap modes.

In this design, there are five independent transfer

channels which make multiple masters access multiple

slaves at the same time and gain a perfect parallelism

performance in MPSoC design.

REFERENCES

[1] W. Wolf, A. A. Jerraya, and G. Martin,

ñMultiprocessor system-on-chip (MPSoC)

technology,ò IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 27,

no. 10, pp. 1701ï1713, 2008.

[2] W. Wolf, ñThe future of multiprocessor systems-on-

chips,ò in Proceedings of the 41
st
 Design Automation

Conference, pp. 681ï685, ACM, New York, NY,

USA, June 2004.

[3] G. Martin, ñOverview of the MPSoC design

challenge,ò in Proceedings of the 43rd ACM/IEEE

Design Automation Conference, pp. 274ï279, 2006.

[4] Bennini L., DeMicheli G., ñNetworks on Chips: A

New SoC Paradigm,ò IEEE Computer, Vol.

35, No. 1, pp.1, 70- 78, January 2002.

[5] Bruce Mathewson ñThe Evolution of SOC

Interconnect and How NOC Fits Within Itò, ARM

Cambridge, UK.

[6] AMBAÊ Specification (Rev 2.0), 1999.

[7] AMBA® AXI Protocol, v1.0 Specification, ARM

IHI 0022B, 2003.

[8] AMBA AXI Protocol specification.

www.arm.com/armtech/AXI.

[9] Jiang Zhou-liang, Quan Jin-guo, Lin Xiao-kang,

ñAnalysis and Application of New Generation

AMBA 3 AXI Protocol.ò

[10] Y.cao et al., ñResearch and Application of AMBA

3.0 AXI Bus Interface Protocol,ò CCIC2006.

[11] Ying-Ze Liao, ñSystem Design And Implementation

Of AXI Bus,ò National Chiao Tung University in

partial Fulfillment of the Requirements for the

Degree of Master.

[12] N. Genko, D. Atienza, and G. D. Micheli, ñA

Complete Network-On-Chip Emulation Framework,ò

In Proceedings of the conference on Design,

Automation and Test in Europe, pp. 246-251, 2005.

[13] W. Zhang et al., ñDesign of a Hierarchy-Bus Based

MPSoC on FPGA, òInternational Conference on

Solid-state and Integrated Circuit Technology,

ICSICTô06, pp. 1966-1968, 2006.

[14] Iqbalur Rahman Rokon, Toufiq Rahman, and

Ahsanuzzaman ñ Hardware Implementation of

AMBA Processor Interface Using Verilog and FPGA

ñ International Conference on Electrical, Electronics

and Civil Engineering (ICEECE'2011)Pattaya Dec.

2011

[15] Fu-ming Xiao, Dong-sheng Li, Gao-ming Du, Yu-

kun Song, Duo-li Zhang, Ming-lun. Gao ñDesign of

AXI Bus Based MPSoC on FPGAò.

Figure 9: Simulation Waveform for Memory Write: Fixed

Burst.

http://www.arm.com/armtech/AXI

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 4, Issue 1, January 2015

55
ISSN: 2278 ï 909X All Rights Reserved © 2015 IJARECE

Figure 10: Simulation Waveform for Memory Write:

Increment Burst.

Figure 11: Simulation Waveform for Memory Write:

Wrap Burst.

Figure 12: Simulation Waveforms for Register Writes:

Fixed Burst ï Address and Data before Transfer.

Figure 13: Simulation Waveforms for Register Writes:

Fixed Burstï Address and Data after Transfer.

Figure 14: Simulation Waveform for Register Writes:

Increment Burst ï Address and Data before Transfer.

Figure 15: Simulation Waveform for Register Writes:

Increment Burst ï Address and Data after Transfer.

Figure 16: Simulation Waveform for Register Writes:

Wrap Burst ï Address and Data before Transfer.

Figure 17: Simulation Waveform for Register Writes:

Wrap Burst ï Address and Data after Transfer.

Figure 18: Simulation Waveform for Memory Read:

Wrap Burst.

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 4, Issue 1, January 2015

56
ISSN: 2278 ï 909X All Rights Reserved © 2015 IJARECE

Figure 19: Simulation Waveform for Memory Read:

Fixed Burst ï Address and Data before Transfer.

Figure 20: Simulation Waveform for Memory Read:

Fixed Burst ï Address and Data after Transfer.

Figure 21: Simulation Waveform for Memory Read:

Increment Burst ï Address and Data before Transfer.

Figure 22: Simulation Waveform for Memory Read:

Increment Burst ï Address and Data after Transfer.

Figure 23: Simulation Waveform For Register Reads:

Fixed Burst -Address and Data before Transfer.

Figure 24: Simulation Waveform For Register Reads:

Fixed Burst ïAddress and Data after Transfer.

Figure 25: Simulation Waveform For Register Reads:

Increment Burst- Address and Databefore Transfer.

Figure 26: Simulation Waveform For Register Reads:

Increment Burst-Address and Data after Transfer.

