International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

IMPLEMENTATION OF MULTI

Volume 4, Issue 1, January 2015

-SLAVE INTERFACE FOR AXI BUS

Anitha.H.T" Manasa B ¥
Visvesvaraya Technology University
Department of Electronics and Communication
Sambhraninstitute of Technology, Bangalore

ABSTRACT:

With the need of application, chip with a single
processorc an ot me et t he need
complex computational task. We are able to integrate
multiple processors on a chipMulti -Processor System
on Chip (MPSoC) which gives a solution to this requires
efficient onchip communication architectures to
support high data bandwidth and increase parallelism.
The traditional form of interconnection between
multiple cores usually is ofthip bus (such as AHB and
Avalon), which determiners the performance of MPSoC.
However, traditional buses only allow one master to
access one slave at one time, whibladly restrictsthe
performance of the whole system.

In this paper we focus on the design and implementation
of a multi slave interface for AXI bus, which translates
data in burst, maximallength of which is up to 16
transactions. Besides, it onlgeeds taranslate the head
address of the burst in thisransaction. Owingto that
feature, multiple masters accessingultiple slavesat
one time becomes possible in sharing addrdsss
architecture Besides, there are five impendent data
transfer channels making it translate data in high speed
and efficiently.

Key words: MPSoC, AMBA, AHB, AXIMulti-slave

I INTRODUCTION

A system on a chipr system on chifgSoQ is an
integrated circui{lC) that integrates all components of a
computeror other electronic system into a gi@ chip.
These SoCs typically consist of several complex
heterogeneous components such as programmable
processors, dedicated (custom) hardware to perform
specific tasks, ochip memories, inpubutput interfaces,
and an orchip communication architectutbat serves as
the interconnection fabric for communication between
these components. The dual forces of advances in
technology, coupled with an insatiable demand for
convergent computing devices (e.g., smart phones that
include cameras, MP3 players, GP%vides) have
influenced the need for complex chips that incorporate

ISSN: 2278 909X

multiple processors dedicated for specific computational
needs]]. These emerging multiprocessor systenrchip
(MPSoC) designs typically consist of multiple
microprocessors, and tens teoundreds of additional
components. These components are integrated via-an on

ochip byg arghiteciurey congigling o of multiple shared
interconnected buses -fJ. And also each of these
components have to be interfaced to the outside world
consisting of a set gfins that are responsible for sending
/receiving addresses, data and control information to/from
other components. The choio¢ pins at the interface is
governed by the particular bus protocol of the
communication architecture. In order to seamlessly
integrate all these components intocSaC design, it is
necessary to have some kind of a standard interface
definition for components. Without a standard interface
definition, the component interfaces will not be
compatible with the bus architecture implenagion, and
consequently will not function correctly.

To speed up SoC integration and promote IP
reuse over several designs, several -lmsed
communication architecture standards have emerged over
the past several years. A communication architecture
standad defines a specific data transfer protocol, which in
turn decides the number and functionality of the pins at
the interface of the components. Usually, -based
communication architecture standards define the interface
between components and the bushidecture, as well as
the bus architecture that implements the data transfer
protocol.

A. PRIOR WORK

Developmenif Networkon-Chip has increased
over a past decadso has the evolution of AMBA
[5].AMBA has becomette defacto standard for eohip
communicéion. The specification has bee&ownloaded
by over 30,000 engineergorldwide and is estimated to
be implemented in billions of SoC devices. The first
AMBA specifications, ASB and APB, were releasied
1995 [6].In 2003, the most significant step was made
the AMBA roadmap, with the addition of AXI. AXI
provides ahigh performance, high speed interface and
interconnectsolution that uses a simple tofirectional
channel based interface. The nature of the interface allows
simple crossdomain crossing andupport for register
slices which ensuresiming closureevenin the most
complex of SoC system designs [7].

49

All Rights Reserved © 2015 IJARECE

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Computer

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

At the present time, there are not many AXI
protocol [§ based designs on the market. In[9] and
[10],the authors proposthe feature and applicatioof
AXI bus interface protocol, buthey cd not present the
design and implementation of AXI bus, nor do they give a
system design of AXI architecture based. In [11], the
author presents the design and impleragom of AXI bus
in detail , \euhe syhtem irdpemeationd t
and performance evaluation of AXI based design.

In [12], the authors propose a MPSOC prototype
on a FPGA based platform, and use a set of transaction
generators (TGs) to generate both stochastic traffic and
the predefined reapplication traffic patterns. That way
can explore different MPSOC architectures fast, but it
candt e v perfarmanhce of tthe eentire MPSOC
accurately under real application and the results are of
little practical value.

In [13], one MPSoC of 4 ARMcores is
implemented on FPGA and the communicate network is
HierarchyAHB b us . But it candt
because of its AHB bus which can only allow one master
to access slave at any time.

In [14], they have implemented a hardware
interface 6r the AMBA AHB and APB busesThe
interface between higperformance AMBA bus AHB
and low performancé&MBA bus APB is created in this
work. Then two target devicemegister andRAM are
connected to APB side to perform read/writperation
through the degned interface commanding from AHB
side.

B. OBJECTIVES

Our aim is to implement a mulslave interface for
AXI bus which is more flexible when compared with the
other AMBA bus architecture. For any transaction
(read/write) only the starting address of theadatgiven,
thereby increasing the processor speed.

0 Implement AXI slave interface.

U The interface block receives the data from the
AXI bus and forwards to the device which are
connected to the interface block.

U Read and write transactions are carried out
simultaneously.

0 Backwardcompatible with existing AHB and
APB interfaces.

Il AMBA AXI

ISSN: 2278 909X

Volume 4, Issue 1, January 2015

The AMBA 3.0 bus architecture specification
introduces the AdvanceeXtensible Interface (AXI) bus
that extends the AHB bus with advanced features to
support the nexgeneration of high performance MPSoC
designs. The goals of the AXI bus protocol include
supporting high frequency operation without using
complex bridges, flexibility in meeting the interface, and

gperformance requirements of a diverse set of components,

ard backward compatibility with AMBA 2.0 AHB and
APB interfaces.

A. ADVANCED EXTENSIBLE INTERFACE

The AXI bus standard proposes a bidrased,
pipelined data transfer bus, similar to the AHB bus, but
with additional advanced features and enhancements. The
AXI1 specification describes a high level charbased
architecture for communicating between masters and
slaves on a bus. Five separate channels are defined: read
address, read data, write address, write data and write
responsg31]. The AXI protocol enabke
give perfect parallelism

U Addressinformation to be issued ahead of the

actual data transfer.

U Supportfor multiple outstanding transactions.

U Support for outof-order completion of

transactions.

Figure 1show how a read transaction uses the read
address and read data channels. The address and control
information for read transfer is sent by the master on the
read channel, while the read data and response
information from the slave is received on the read data
channel.

Read address channel

Address
and
control

—
Slave

interface

Master

interface
Read data channel

Read
data

Read
data

Read
data

Read
data

— — — —

Figurel: Channel Architecture of Reads.

Figure 2 shows how a write transaction uses the
write address, write data, and write response channels.
The address and control information for a write transfer is
sent on the write address channel, witile write data is
transmitted on the write data channel.

50

All Rights Reserved © 2015 IJARECE

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Write address channel

Address
and
control

—_—

Write data channel

Master Write Write Write Write
interface data data data data

Slave
interface

_— s — —

Wirite response channel

Write
response

Figure2: Channel Architecture of Writes

M. IMPLEMEN TATION OF MULTI -
SLAVE INTERFACE

A. PROPOSED MODEL

The main objective of the project is to implement a
slave interface for AXI busFigure 3 gives the block
diagram of the proposed modelere the ARM processor
(32-bit) acts as te master and the slaves tthare
considered here is memory and register bank. It employs
the pipelined burst transfer mode for data transfer. The
address and data assare 32bit wide.

MEMORY
REGISTER BANK

MULTISLAVEINTERFACE

ARM AXI
PROCESSOR INTERFACE

AXIBUS

Figure 3 Block diagram.

Write address
channel

—

Write data charmel

—
AXI AXI
MASTER | Waerspome | INTERCONN
ECT

Write address
charmel

—

TWrite data
chamnel

—

Write response
charmel

AXISLAVE

channel

Readaddress
channel

——
S —

Readdata
channel

Readaddress
chamnel

Readdata
chamnel

Figure 4: Different channels of AXI bus.

Write Address Channel

ISSN: 2278 909X

Volume 4, Issue 1, January 2015

The master can assert tHNVALID signal
only when it drives valid address and control information.
It must remain asserted until the slave accepts the address
and control information and asserts the associated
AWREADY signal. The default value cAWREADY
can be either HIGH or LOW. The mmmended default
value is HIGH, although IRAWREADY is HIGH then the
slave must be able to accept any valid address that is
presented to it.

A defaultAWREADY value of LOW is possible
but not recommended, because it implies that the transfer
takes at leastwo cycles, one to asseMWVALID and
another to asseAWREADY .

Write Data Channel

During a write burst, the master can assert the
WVALID signal only when it drivewvalid write data.
WVALID must remain asserted until the slave accepts
the write dataand assertsthe WREADY signal. The
default value o WREADY can be HIGH, but only if the
slave can alwayaccept writedata in a singleycle. The
master must assert tMELAST signal when it drives the
final write transfer in théurst. WhendWVVALID is LOW,
the WSTRB[3:0] signals can take any value, although it
is recommended that they are either driven LOW or held
at their previous value.

Write Response Channel

The slave can assert ti®/ALID signal only
when it drives a valid write responsBVALID must
remain asserted until the master accepts the write
response and asserBREADY. The default value of
BREADY can be HIGH, but only if the master can
always accepa write response in a single cycle.

Read Address Channel

The master can assert thRVALID signal ony
when it drives valid addressnd controlinformation. It
must remain asserted until the slave accepts the address
and control information and asserts the associated
ARREADY signal. Thedefault value oARREADY can
be either HIGH or LOW. Theecommendedefaultvalue
is HIGH, although ifARREADY is HIGH then the slave
must be able taccept any valid address that is presented
to it. A default ARREADY value of LOW is possible but
not recommended, becauseirtplies that the transfer
takes at least two cyde one to asseARVALID and
anotherto asserARREADY .

Read Data Channel

The slave can assert ti/ALID signal only
when it drives valid read dat®RVALID must remain

51

All Rights Reserved © 2015 IJARECE

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

asserted until the master accepts the data and asserts the
RREADY signal.Even if a slave has only one source of
read data, it must assert th/ALID signal onlyin
response to a request for the dathe master interface
uses theRREADY signal to indicate that it accepts the
data. Thedefault value ofRREADY can be HIGH, but

only if the master is able to accept redata immediately,
whenever it performs a read transactidhe slave must
assert theRLAST signal when it drives the final read
transfer in théourst.

B. DEPENDENCIES BETWEEN CHANNEL
HANDSHAKE SIGNALS

To prevent adeadlock situation, we must
observe the dependencies that exist between
handshake signals.

the

In any transaction:

U theVALID signal of one AXI component must
not be dependent on tHREADY signal of the
other component in the transaction

U the READY signal can wait for assertion of the

VALID signal.

Figure 5 and Figure6 show the handshake signal
dependencies. The singheaded arrows point to signals
that can be asserted before or after the previous signal is
asserted. Doublaeaded arrows point tagmals that must
be asserted only after assertion of the previous
signal.Figure4.6 shows that, in a read transaction:

U the slave can wait foARVALID to be asserted
before it assertdRREADY
U the slave must wait for bothRVALID and

ARREADY to be asserted Bme it starts to
return read data by assertiRyALID .

ARVALID ———» RVALID

NAR

ARREADY RREADY

Figureb: Read Transaction Handshake Dependencies.

Figureb shows that, in a write transaction:

U the master must not wait for the slave to assert
AWREADY or WREADY before asserting
AWVALID or WVALID

U the slave can wait fohAWVALID or WVALID ,

or both, before assertilgVVREADY

ISSN: 2278 909X

Volume 4, Issue 1, January 2015

the slave can wait fohWVALID or WVALID ,
or both, before assertityREADY

i

the slave must wait for bothWVALID and
WREADY to be asserted beforasserting

BVALID .
\

BREADY

AWVALID

\

AWREADY

WVALID ———»» BVALI

N

WREADY

Figures:Write Transaction Handshake Dependencies.
C. ADDRESSING OPTIONS

The AXI protocol is bursbased, and the master
begins each burst by driving transfantrol information
and the address of the first byte in the transfer. As the
bursttransaction progresses, itttse responsibility of the
slave to calculate the addressesubsequent transfers in
the burst. Bursts must not cross 4KB boundaries to
prevent them from crossing boundariestween slaves
and to limit the size of the address incrementer is required
within slaves.

Burst Length

The AWLEN or ARLEN signal specifies the
number of data transfers that ocowithin eachburst.
Each burst can be-16 transfers longFor wrapping
bursts, the length of the burst must be 2, 4, 8, or 16
transfers.Every transaction must have the number of
transfers specified byARLEN or AWLEN. No
component can terminate a burst early to reduce the
number of data transferBuring a write burst, the master
can disable further writing by deasserting all the write
stradbes, but it must complete the remaining transfers in
the burst. During a readurst, themaster can discard
further read data, but it must complete the remaining
transfers irthe burst.

Burst Size

The ARSIZE or AWSIZE signal specifies the
maximum numbeiof data bytes to transfer in each beat,
or data transfer, within a burst. The AXI determines from
the transfer address which byte lanes of the data bus to
usefor eachtransfer. Foincrementing or wrapping bursts
with transfer sizes narrower than the datas,bdata
transfers are on different byte lanes for each beat of the
burst. The address of a fixdxirst remains constant, and
every transfer uses the same byte lafié® size of any

52

All Rights Reserved © 2015 IJARECE

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

transfer must not exceed the data bus width of the
components ithetransaction

Burst Type

The AXI protocol defines three burst types:
1 Fixed burst
1 Incrementing burst
1 Wrapping burst

Fixed burst

In a fixed burst, the address remains the same for
every transfer in the burst. This butgpe is for repeated
accesses to theame location such as when loading or
emptying gperipheral FIFO.

Incrementing burst

In an incrementing burst, the address for each
transfer in the burst is an increment of theevious
transfer address. The increment value depends on the size
of the trasfer. Forexample, the address for each transfer
in a burst with a size of four bytes is theevious address
plus four.

Wrapping burst

A wrapping burst is similar to an incrementing
burst, in that the address for each trangiethe burst is
an increment of the previous transfer address. However,
in a wrappingburst the address wraps around to a lower
address when a wrap boundary resached. Thewrap
boundary is the size of each transfer in the burst
multiplied by thetotal numbeiof transfers irthe burst.

V. SIMULATION RESULT S

Verilog code is written for the read and write
transactions that happen in burst format. The burst
transactions mainly occur in three ways, namely fixed,
increment and wrapThe Verilog code written for entire
design iscompiled in Modelsim simulator to check for the
errors.

ISSN: 2278 909X

Volume 4, Issue 1, January 2015

T m T2 T3 T4 T5 T6 T7 T8 T8 TIO T T2 T3

alipinigingigigligigigigigiginl
ARADDR T & [

ARVALID _y‘ T

ARREADYTY 1Y
RDATA Jpan Jorar ez |
RLAST 3
RVALID [l r 7 i I
RREADY T if | i

Figure 7: Read Burst Transactions.
Read Burst

Figure 7 shows a read burst of four transfers.
Here, themaster drives the address, and the slave accepts
it one cyclelater. After the address appearsthe address
bus, the dat&ransfer occurs on the read data charfle¢
slave keeps th€ALID signal LOW until the read data is
available. For the final data transfer of the burst, the slave
asserts th&LAST signal to show that the last data item
is being transferred.

Write Burst

Figure 8 shows a write transaction. The process
starts when the master sends an address and control
information onthe write address channel. The master then
sends each item of write data over the write data channel.
When he master sends the last data item, WIeAST
signal goes HIGH. When the slave has accepted all the
data items, it drives a write response back to the master to
indicate that the writeransaction is complete.

T T T2 T3 T4 Ts T8 T7 T8 T2 TI0
ACLK | s) O B
AWADDR: | . I
AwvALD: [T 1
AwreaDy |)
WDATA, [deoy W0 dian | owalowa) T
WLAST f
WVALID J T B | |
WREADY 7 / i i ||
BRESP JoRAVITTT
BVALID e
BREADY i |

Figure 8: Write Burst Transaction.

Figures 9-10 shows thewrite transaction waveforms for
memory in all three burst modes.

Figures 1217 shows the write transaction waveforms for
register bank in all three burst modes.

Figures 182 shows thereadtransaction waveforms for
memory in all thee burst modes.

53

All Rights Reserved © 2015 IJARECE

(1]

(2]

(3]
(4]
(5]
g

(8]
9]

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 4, Issue 1, January 2015

Figures 2327 shows the read transaction waveforms for[10] Y. cao et al , pplicatioe ef ARIBAC h a n ¢
register bank in all three burst modes. 3.0 AXI Bus I nterface Proto
[11] Ying-Z e L iSgstem DeSign Andmplementation
V. CONCLUSION AND FUTURE WORK Of AXI Bus dNational Chiao Tung University in
o) partial Fulfilment of the Requirements for the

The AMBA AXI specification represents a major Degreeof Master.
evolutionary step in interconnect technology foratip 127 N, Genko, D. Atienza, and
system designThe result is an interconnect architecture Complete NetworklOnChi p Emul ati on Fr ¢
suitable for FPGAs and ASICs. In Proceedings of the conference obesign,

Here we design and implement AXI interface for [13] C\;J.tomaztlzn;l:]d ;’esténtEur?T)p. 2462_;']’92322'@ gn of
two slaves i.e., internal memory and register bank with MPS0C onFPGA o1 nt er n, ational Con
one master. The address/data is transferred from master to Solidstate and Integrated Circuit Technology
slave using write attess/data channel and read the data | CSI CT 60 6-1968p2006. 1 9 6 6 '
from slave using read data channdere the read and 14] Igbalur Rahman Rokon, Toufiq Rahman, and
write transactions occur simultaneously because there a|[e Ahsanuzzama n i Har d war e |
five different channels for read and write and no AMBA Processolinterface Using Verilog and FPGA
multiplexing is required. The entire design is described fi International Conference on Electrical, Electronics
using Verilog HDL. The functionality of the design is and Civil Engineering (ICEECE'ZOlEh’Etaya Dec.
tested by writing a testbench. This Verilog description is 2011
simulated using Modelsim simulator. The waveforms ar 15] Fu-ming Xiao, Dongsheng Li, Gaaming Du, Yu
analyzed where we can see the read and write burst Kun S D ’d' 7h M ,I G’ 5 D .
transactions in fixed, increment andap modes. un song, buél zhang, Mingl u n . ao nbesi

AXI Bus Based MPSoC on FPGA

In this design, there are five independent transfer
channels which make multiple masters access multiple
slaves at the same time and gain a perfect parallelism
performance in MPSoC design.

REFERENCES

W. Wolf, A. A. Jerraya, and G. Martin,
AMul ti pr o systsmomchip (MPSoC)
t e ¢ h n olEE& gnansactions on Computdided
Design of Integrated Circuits and Systenasl. 27,
no. 10, pp. 17011713, 2008.

W. Wol f, AThe futur e-onof
c hi p Proaeedingof the 41 Design Automation
Conference pp. 681685, ACM, New York, NY,
USA, June 2004.

G. Marti n, AOverview
c hal | e Ppesedings iofnthe 43rd ACM/IEEE
Design Automation Conferengep. 274279, 2006.
Bennini L., DeMicheli G.,fiNetworks on Chips: A
New SoC Paradigr IEEE Computer, Vol.
35, No. 1, pp.1, 7078, January 2002.

of

Bruce Mat hewson AnThe E
I nterconnect and How NOC
Cambridge, UK.

AMBAE Specification (Rev

AMBA® AXI Protocol, v1.0 Specification, ARM
IHI 0022B,2003.

AMBA AXI Protocol
www.arm.com/armtech/AXI|
Jiang Zhodiang, Quan Jirguo, Lin Xiackang,
AANnal ys iAgplicatom dbf New Generation
AMBA3AXI Protocol . 0

specification.

ISSN: 2278 909X

File Edt View Add Format Took Window

[T wave - default
; T

m

Figure9: Simulation Wavéorm for Memory Write: Fixed

vol ution o BuUrst s oc
Fits Within lto, ARM
2.0), 1999.

54

All Rights Reserved © 2015 IJARECE

http://www.arm.com/armtech/AXI

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)
Volume 4, Issue 1, January 2015

OSES! BB TS| SERM|| b Kw

OCEA 3 AR LR R T I i R

Figure14: Simulation Waveform for Register Writes:
Increment Burst Address and Data before Transfer.

Figure10: Simulation Waveform for Memory Write:
Increment Burst.

S BB bW o B K] ARG e W O wns HEG B E SR
|

Figure15: Simulation Wavefornfor Register Writes:
Increment Burst Address and Data after Transfer.

[wave - defauit
Flo Edt Viow Add Fomat Toos Wrdom

IFES B ALS
§ ¢ i o

[enaa]| 2x s oz e g 8084w

Figurell: Simulation Waveform for Memory Write:

Wrap Burst.
Figure16: Simulation Waveform for Register Writes:

Wrap Bursti Address and Data before Transfer.

gl File Edit Yiew Add Format Tools Window

IEEEIRE

e

Figurel7: Simulation Waveform for Register Writes:
Wrap Bursti Address and Datafter Transfer.

Figure 12 Simulation Waveforms for Register Writes:
Fixed Bursfi Address and Dathefore Transfer.

Cursor 1 16242 ng

Figure 18 Simulation Waveform for Memory Read:
Figure13: Simulation Waveforms for Register Writes: Wrap Burst.
Fixed Burst Address and Data after Transfer.

55
ISSN: 2278 909X All Rights Reserved © 2015 IJARECE

ISSN: 2278 909X

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Figure19: Simulation Waveform for Memory Read:
Fixed Bursti Address and Data before Transfer.

Figure D: Simulation Waveform for Memory Read:
Fixed Bursti Address andData after Transfer.

Figure 21 Simulation Waveform for Memory Read:

Increment Burst Address and Data before Transfer.

Volume 4, Issue 1, January 2015

Figure22: Simulation Waveform for Memory Read:
Increment Burst Address and Data after Transfer.

Figure 23 SimulationWaveform For Register Reads:
Fixed BurstAddress and Data before Transfer.

Figure24: Simulation Waveform For Register Reads:
Fixed Bursfi Address and Datater Transfer.

Figure25: Simulation Waveform For Register Reads:
Increment BurstAddress andDatabefore Transfer.

Figure26: Simulation Waveform For Register Reads:
Increment BursiAddress and Datafter Transfer.

56

All Rights Reserved © 2015 IJARECE

