
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 2, February 2015

334

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

IMPLEMENTATION OF SHA-256 ALGORITHM IN FPGA

BASED PROCESSOR

SOUNDARYA.J PG SCHOLAR,
1
 K.VENKATESA..,ME

2,
Assistent professor.

SRI SHAKTHI INSTITUTEOF ENG AND TECH, SRI SHAKTHI INSTITUTE OF ENG AND TECH,

COIMBATORE-641062. COIMBATORE-641062.

Abstract:

Hash functions play a significant role

in today's cryptographic applications. SHA

(Secure Hash Algorithm) is famous message

compress standard used in computer

cryptography, it can compress a long

message to become a short message

abstract. In this paper, SHA- 256 hash

algorithm has been implemented using

Verilog HDL (Hardware Description

Language). The SHA-256 source code is

divided into three modules, namely Data

path, Memory and Top module. The

Verilog code is synthesized using Xilinx

software tool. The test vectors have been

applied to verify the correctness of the

SHA-256 functionality. A comparison

between the proposed SHA-256 hash

function implementation with other related

works shows that it achieves the introduced

system can working on reuse data,

minimize critical paths and reduce the

memory access by using cache memory,

reducing clock cycles and needs less

silicon area resources. The achieved

performance in the term of throughput of the

proposed system/architecture is much higher

than the other hardware implementations.

The proposed system could be used for the

implementation of integrity units, and in

many other sensitive cryptographic

applications, such as, digital signatures,

message authentication codes and random

number generators.

1.Introduction:

cryptographic algorithms

have been considered slow, demanding

high computational resources and

inefficiently implemented in

conventional general purpose

processors. That fact has motivated the

design and implementation of dedicated

computing architectures that allow to

accelerate the processing time and

increase the performance expressed as

mega bits per second (Mbps). These

custom architectures in general can be

classified according to two designing

approaches: processor and co-processor.

The processor approach is more oriented

to use less amount of area resource, the

co-processor approach is more oriented

to perform the algorithmic operations

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 2, February 2015

335

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

faster. The aim is to provide the

minimum hardware that can be used to

execute a finite set of machine

instructions that, according to a program

executes the cryptographic SHA

algorithm. A hash function is a sort of

operation that takes an input and

produces a fixed- size string which is

called the hash value. The input

string can be of any length depending

on the algorithm used. The produced

output is a condensed representation of

the input message or document and

usually called as a message digest, a

digital fingerprint or a checksum. The

size of the message digest is fixed

depending on the particular algorithm

being used.

This means that for a particular

algorithm, all input streams yield an

output of same length. Furthermore a

very small change in the input results

with a completely different hash value.

Hash functions can be classified as

keyed and un keyed hash functions.

The keyed hash functions take a secret

key as an additional input parameter. In

this case, the above defined

characteristics of hash functions are

satisfied for any value of the secret key.

Keyed hash functions are also named as

Message Authentication Codes or

MACs. In this study, we only deal with

un keyed hash functions.

 The hash value of the document
is calculated.

 The calculated hash value is

encrypted with the private

key, thereby the document is

signed

 The document and the signed
hash value are send to the recipient

 The recipient calculates the one

way hash value of the

document and decrypts the

signed hash value by using the

public key. If the signed hash

value is the same with the

calculated hash value, then the

signature is valid.

There are two brute-force attacks

to a hash function. In a brute force,

random inputs are tried and the results

of the computations are stored until a

collision is found. The first attack can be

described as follows: Suppose that the

hash of a specific message is given, an

adversary can try to find another

message which has the same hash

value. On the other hand, the second

attack can be explained as follows:

suppose that an adversary tries to find to

messages that have the same hash value.

This attack is easier than the first one

and known as birthday attack

2.SHA algorithm:

In order to catch

security levels offered by other

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 2, February 2015

336

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

cryptographic algorithms, NIST

developed the three new hash

functions: SHA-256, SHA-384 and

SHA-512. These hash functions are

standardized with SHA-1 as SHS

(Secure Hash Standard). A 224-bit hash

function SHA-224, based on SHA-256,

has been added to SHS in 2004. Hash

calculations are mainly composed of

three sections. In the first part the

incoming message is padded and fixed

sized message blocks are prepared

according to the particular hash function

being applied. After these padding

operations, the message schedule is

prepared. In this state, message block is

further divided into sub blocks to be

used in each round of the hash

calculation process. In the hash

calculation process message digest is

computed after some specific number of

iterations related to the algorithm by

using

 Algorithm specific constants

 Message words prepared by the
message scheduler

 The chaining variables

Hash functions can be

implemented in hardware or software.

However, as security and throughput

requirements of the systems increase, it

is found that software implementations

cannot provide desired security and

throughput values As a result, it is

preferred to implement the hash

functions in hardware. There are several

hash function implementations in the

literature and commercially available in

the market.

2.1SHA -256:

The SHA-2 family was published in

2002 by the National Institute of Standards

and Technology (NIST). SHA-256 is an

algorithm specified in the SHA-2 family,

sharing similar functionality with other

versions with higher security such as SHA-

384 and SHA-512. It computes the digest of

an arbitrary length message in the following

way. The input message m is padded with

one‘1’ and leading ‘0’s until the message

length (in bits) becomes a multiple of 512.

The last 64 bits in the padded message are

used to store the length of the original

message as a 64-bit number. After the

padding, the resulting message is divided

into blocks of length 512-bits D(1),D(2)...

D(N). Each block of data D(i) is processed

sequentially by a main function during 64

rounds. A partial 256-bit hash value Hi is

obtained as the current D(i) data block is

totally processed. After computing the last

data block D(N), the final hash H(N) is

computed and delivered.

2.2SHA main loop:

Require: D(i) a 512-bit block

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 2, February 2015

337

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

Ensure: The HASH value H(i)

corresponding to D(i) from H(i_1)

1: for t from 0 to 63 do

2: Prepare Wt

3: Compute∑(a)

4: Compute Maj(a; b; c)

5: Compute T2

6: Compute∑1(e)

7: Compute Ch(e; f ; g)

8: Compute T1

9: h← g

10: g← f

11: f ←e

12: e ←d +T1

13: d ←c

14: c← b

15: b← a

16: a ←T1 + T2

17: end for

18: H(temp) = a|b|c|d|e|f |g|h

19: H(i) ←H(i_1) + H(temp)

20: return H(i)

3.Proposed system:

The hardware organization of the

proposed processor for the SHA-256

algorithm was to reuse data, minimize

critical paths and reduce the memory access

by using cache memory. Initially, the SHA-

256 processor was designed containing a

simplified 2-input ALU with the main

objective to reduce area consumption. The

expectation was that a small ALU

considering only two operands would lead

to a compact design of the SHA processor.

However, during the design process and

based on a study on the type of operations in

the SHA algorithm, their execution

sequence and the associated dataflow, we

realize that a more compact design could be

achieved by designing a 4-input ALU,

reducing clock cycles and memory resources

for intermediate results. A 4-input ALU is

well suited for implementation in FPGAs,

mapping the logic to the 4-in LUTs (Look

up tables) included in them.

The proposed architecture for the

SHA-256 processor consists of the

following main modules: a control unit, a

datapath, a bank of 32-bit registers, and two

ROM memory blocks. The architectural

hardware design is based on an analysis of

the operations involved in the algorithm

itself. Such analysis allowed to identify the

kind and sequence of operations to design a

specialized 4-input ALU, as well as internal

cache memory to speed up the data access

and reduce read/write cycles to the register

bank.

Lets consider again the main

operations computed in the internal rounds

of the SHA-256 algorithm. The equations

for computing Wt ; T1; T2; a, and e can be

conveniently rewritten, leading to a new set

of equations of the form f = w + x + y + z,

without altering the functioning of the SHA

algorithm. The main goal in this new

representation is to define basic instructions

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 2, February 2015

338

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

that can be efficiently computed in a

specialized 4-input ALU.

The datapath for the proposed SHA-

256 processor is shown in A customized

ALU named HASH_ALU computes Eqs.

Additionally, a smaller arithmetic unit

named AU performs sums of two operands

and transfers the intermediate hash value

H(i) to the buffer state (the working

variables a–h). The AU module is composed

of an adder and a multiplexer that allows to

select the result between the incoming data

(a transfer) or the adder result.

Fig: 3.1 block diagram of SHA- 256

processor

The R module is a forwarding unit

that allows to feedback data obtained one

previous iteration to the HASH_ALU. This

functionality reduces the number of memory

access and avoids the unnecessary memory

addressing and all the related logic. Another

responsibility for this module is to compute

the operation Ty _ d. So, the R module is

composed of a 32-bit register, a subtracter,

and a multiplexer. The values that can be

propagated by the R unit are: the incoming

operand D and the subtraction between the

incoming data R1 and the internal register

R2. The R2 register stores the incoming

operand C from the previous iteration. The

block diagrams of the HASH_ALU, AU and

R modules are depicted.

Fig: 3.2data path for computing basic

operation in SHA 256 algorithm

During the execution of an internal

round of the SHA-256 algorithm in the

interval 0 6 t < 16, the data path contains the

values shown. When 16 6 t < 64, the data

flow in the data path is as shown. The

control unit generates the four addresses for

the operands incoming to the HASH_ALU

unit as well as the address for the destination

register, where the result obtained from the

ALU is stored. In addition, the control unit

orchestrates the data source to the ALU.

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 2, February 2015

339

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

During the first 16 cycles the data is taken

from the exterior, that is, the first 16 32-bit

words are taken from the 512 data block

D(i) to be hashed. Once the 512-bit data

block is loaded, the control unit transfers the

content of the intermediate hash H(i) to the

buffer state (registers a–h). For the first

block, such intermediate hash value is the

initial hash value H(0), which is taken from

a memory that stores constants. For the next

rounds and data blocks, H(i) is computed

from the registers a to h and the previous

H(i_1).

The control unit is a finite state machine

composed of 9 states:

S0 – The initial state waits for new message

to be hashed.

S1 – Loads the 16 words of the input

message, one at each clock cycle.

S2 – Loads the initial hash H(0) or update

the intermediate hash value H(i).

S3 – Computes Wt , being Wt =Mt for the

first 16 rounds. After that, Wt is computed

using the HASH_ALU.

S4 – Computes T(x) the result is not stored

in memory

S5 – Computes Ty. First computes d + T1

(see equation) and stores the result in the

address for d, not for e as the algorithm

indicates. This is done because the

algorithm indicates that each variable will

contain the value from the variable that

precedes it. The control unit rotate the

addresses of the variables in order to avoid

unnecessary assignments and save time.

Fig 3.3 Internal structure of main modules in

the data path for the proposed SHA-256

processor.

S6 – Computes T(z) and stores the result in

the variable h. Again, the same reasoning

applied in the state S5 is used to avoid

unnecessary assignments and save time.

S7 – Computes the intermediate hash value

H(i).

S8 – All data blocks are processed. The final

value in H(N) is taken and placed in the data

out bus.

4.Results:

The proposed SHA-256 compact

processor was described using VHDL. The

Xilinx ISE 13.2 tools were used for

implementing the VHDL design in a Xilinx

Virtex-5 FPGA. ISE tools allow to calculate

the utilized hardware resources and to

determine the maximum clock frequency,

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 2, February 2015

340

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

useful parameters for measuring the After the internal loop, the

Throughput and Efficiency of Performance.

 Throughput = Data block size /

 intermediate hash value is computed.

This process takes 8 cycles.

Clock time _ Clock cycles

 Efficiency =Throughput / Number of

 Finally, it takes 8 cycles to output

the final hash value.

slices

The FPGA implementation results are

shown ,

Fig:4.1 fpga implementation

The SHA-256 processor processes a 512-bit

data block with a latency of 280 clock

cycles:

 16 Cycles are used to load the 512-

bit data block.

 8 Cycles are used to transfer the

intermediate hash value Hi to the

working variables a–h.

The internal loop (64 rounds) are computed

in two sequences:

 During the first 16 rounds Wt is

taken from the incoming 512-bit data

block and only 3 cycles are used.

 For the next 48 rounds, Wt is

computed using the HASH_ALU,

requiring 4 cycles per round.

Our proposed architecture

compromises performance and area usage,

reusing the hardware as much as possible to

keep a high efficiency. The hardware

architecture proposed in this work is based

on the design principles for computer

architecture (i) Simplicity favours regularity,

(ii) smaller and simpler is faster, (iii) make

the common case fast, (iv) good design

demands good compromises. From the

architectural point of view, our proposal is

quite different from previous approaches to

construct compact SHA processors. The

hardware architecture presented in [17]

(which is almost the same presented in

([19]) uses a 2-input ALU containing only

one adder.

This module is re-used, taking the

input data from two 5-1 multiplexers. Their

design uses three RAM memories where

variables and constants are stored. Also,

other combinatorial independent modules

are required to compute the required

operations in the SHA algorithm. On the

contrary, our design uses only one memory

and a single ALU computing all the required

operations in the SHA algorithm. The

hardware architectures presented in [16,18]

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 2, February 2015

341

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

also contain independent specialized

modules (generator, compressor and

controller separately). In that design, there is

not memory for storing the buffer state

containing the current hash value. Instead, a

set of registers are used. The module for

computing the hash value uses only one

adder, which is re-used by multiplexing its

inputs with 2-1 and 7-1 multiplexers.

The generator module uses two

adders, one memory and one register. The

architecture presented in [19] also re-uses

only one adder and keeps independent

modules for computing the operations in the

SHA algorithm. That design requires three

memories for storing data being processed at

each round, buffer state and constants. The

adder takes its arguments from two sources

selected by 5-1 multiplexers. In [20], the

reported architecture is more complex,

keeping the data at each round stored in

registers, and the figure of an integrated

ALU is not present. Although it is hard to

compare different FPGA implementations

due to the different technologies used, we

attempt to provide a comparison as fair as

possible in Table 2 among representative

FPGA implementations of SHA algorithm

under the same conditions.

However, compared to [17,19] our

design achieves a performance three times

better operating at a lower frequency. The

SHA processor presented in [18] and

implemented in a Virtex-II XC2V2000

requires 779 slices,

Fig 4.2 comparison results

490 clock cycles with a clock frequency of

71.5MHz achieving 74.7 Mbps. In contrast,

we require 45% less area resources, 42%

less clock cycles, with a lower clock

frequency of 35.5 MHz. In terms of

efficiency, our design is better obtaining

0.150 Mbps/Slice compared to 0.096

Mbps/Slice obtained by [18]. Similarly, our

design uses 64% less area resources than

[16] although with the cost of a decrease in

the performance but with better efficiency

(0.1 vs. 0.15). Compared to [20], we use

over 30% less area resources under the same

FPGA technology. In terms of performance,

we achieve almost double of the throughput

reported in [20]. The basic idea in [20] is the

design of an unrolled architecture, reusing

hardware and restricting operations to only 8

bits. However, that hardware reusing

approach increases the area usage and

latency, which affects the overall

performance.

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 2, February 2015

342

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

The performance achieved by the

SHA processor described in this work,

which is higher than the one obtained by an

ASIC implementation [17,19], is enough for

mobile applications such as Wi-Fi, TMP

(Trusted Mobile Platform), MTM (Mobile

Trusted Module), where the maximum

throughput is about 50 Mbps.

5.Conclusion:

This work presented and discussed

the hardware design of a customized

processor for executing the SHA-256

algorithm. The main module is a 4-input

ALU and a customized datapath that reuses

data, avoids unnecessary access to memory

and its FPGA implementation leads to short

critical paths and reduced amount of area,

around 60% compared to related works. The

VERILOG description of the processor is

well mapped to the 4-in LUTs contained in

common FPGAs, making an efficient use of

the available area. The resulting design uses

fewer area resources than other approaches

while keeping a performance suitable for

mobile applications like Wi-Fi or IEEE

802.11 networks, where the performance is

around 50 Mbps. Our first approach was to

design a simple datapath consisting in a

small 2-input ALU. However, we needed to

rewrite the original equations in the SHA-3

algorithm to derive the customized 4-input

ALU and its associated datapath to get a

more compact SHA processor. Our design

can be easily extended to other hash

algorithms of the SHA-3 family since all of

them exhibit a similar functionality.

6.REFERNCE:

[1] Kim H, Lee M-K, Kim D-K, Chung S-

K, Chung K. Design and implementation of

crypto co-processor and its application to

security systems. In: Hao Y, Liu

J, Wang Y-P, Cheung Y-m, Yin H, Jiao L,

et al., editors. Computational intelligence

and security. Lecture notes in computer

science, vol. 3802. Berlin

Heidelberg: Springer; 2005. p. 1104–9.

[2] Reddy SK, Sakthivel R, Praneet P. VLSI

implementation of AES crypto processor for

high throughput. In: (IJAEST) International

journal of advanced

engineering sciences and technologies, vol.

6; 2011. p. 022–6.

[3] Huffmire T, Brotherton B, Sherwood T,

Kastner R, Levin T, Nguyen TD, et al.

Managing security in FPGA-based

embedded systems. IEEE Des Test Comput

2008;25(6):590–8.

http://dx.doi.org/10.1109/MDT.2008.166.

[4] Crenne J, Cotret P, Gogniat G, Tessier

R, Diguet J-P. Efficient key-dependent

message authentication in reconfigurable

hardware. In: 2011 International

conference on field-programmable

technology (FPT’11); 2011. p. 1–6.

[5] National Technical Information Service.

FIPS 180-2 – secure hash standard, U.S.

http://dx.doi.org/10.1109/

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 2, February 2015

343

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

Department of Commerce/NIST,

Springfield, VA; 2002 <http://

csrc.nist.gov/publications/fips/fips180-

2/fips180-2.pdf>.

[6] Sklavos N, Koufopavlou OG.

Implementation of the SHA-2 hash family

standard using FPGAs. J Supercomput

2005;31(3):227–48.

[7] Regenscheid A, Perlner R, Chang S-j,

Kelsey J, Nandi M, Paul S. Status report on

the first round of the SHA-3 cryptographic

hash algorithm competition.

Tech rep, NIST; 2009.

[8] Andreeva E, Mennink B, Preneel B.

Security reductions of the second round

SHA-3 candidates. In: Proceedings of the

13th international conference on

information security, ISC’10. Berlin,

Heidelberg: Springer-Verlag; 2011. p. 39–

53.

[9] Lee YK, Chan H, Verbauwhede I.

Verbauwhede: iteration bound analysis and

throughput optimum architecture of SHA-

256 (384,512) for hardware

implementations. In: Information security

applications, 8th international workshop,

WISA 2007. Lecture notes in computer

science, vol.

4867. Springer-Verlag; 2007. p. 102–14.

[10] Lee Y, Knezevic M, Verbauwhede I.

Hardware design for hash functions. In:

Verbauwhede IM, editor. Secure integrated

circuits and systems, integrated

circuits and systems. US: Springer; 2010. p.

79–104. http://dx.doi.org/10.1007/978-0-

387-71829-3_5.

[11] Mladenov T, Nooshabadi S.

Implementation of reconfigurable SHA-2

hardware core. In: IEEE Asia Pacific

conference on circuits and systems, 2008.

APCCAS 2008; 2008. p. 1802–5.

[12] Glabb R, Imbert L, Jullien G, Tisserand

A, Veyrat-Charvillon N. Multi-mode

operator for SHA-2 hash functions. J Syst

Archit 2007;53(2–3):127–38.

http://dx.doi.org/10.1016/j.sysarc.2006.09.0

06.

[13] Sklavos N, Koufopavlou O. On the

hardware implementations of the SHA-2

(256, 384, 512) hash functions. In:

Proceedings of the 2003 international

symposium on circuits and systems, 2003.

ISCAS ’03. vol. 5; 2003. p. V-153–V-156.

http://dx.doi.org/10.1109/ISCAS.2003.1206

214.

[14] Ting K, Yuen S, Lee K, Leong P. An

FPGA based SHA-256 processor. In:

Glesner M, Zipf P, Renovell M, editors.

Field-programmable logic and

applications: reconfigurable computing is

going mainstream. Lecture notes in

computer science, vol. 2438.

Berlin/Heidelberg: Springer; 2002. p.

449–71. http://dx.doi.org/10.1007/3-540-

46117-5_60.

[15] Shi Z, Ma C, Cote J, Wang B.

Hardware implementation of hash functions.

http://dx.doi.org/10.1007/
http://dx.doi.org/10.1016/
http://dx.doi.org/10.1109/
http://dx.doi.org/10.1007/

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 2, February 2015

344

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

In: Tehranipoor M, Wang C, editors.

Introduction to hardware security and

trust. New York: Springer; 2012. p. 27–50.

http://dx.doi.org/10.1007/978-1-4419-8080-

9_2.

[16] Kim M, Lee D, Ryou J. Compact and

unified hardware architecture for SHA-1 and

SHA-256 of trusted mobile computing. Pers

Ubiquit Comput

2012:1–12.

http://dx.doi.org/10.1007/s00779-012-0543-

0.

[17] Feldhofer M, Wolkerstorf er J.

Hardware implementation of symmetric

algorithms for RFID security. In: K itsos P,

Zhang Y, editors. RFID

security. US: Springer; 2009. p. 373–415.

http://dx.doi.org/10.1007/978-0-387-76481-

8_15.

[18] Kim M, Ryou J, Jun S. Efficient

hardware architecture of SHA-256

algorithm for trusted mobile computing. In:

Yung M, Liu P, Lin D, editors. Information

security and cryptology. Lecture notes in

computer science, vol. 5487. Berlin

Heidelberg: Springer; 2009. p. 240–52.

http://dx.doi.org/10.1007/978-3-

642-01440-6_19.

[19] Feldhofer M, Rechberger C. A case

against currently used hash functions in

RFID protocols. In: Meersman R, Tari Z,

Herrero P, editors. On the move to

meaningful internet systems 2006 – OTM

2006. Lecture notes in computer science,

vol. 4277. Montpellier, France: Springer;

2006. p. 372–81.

[20] Cao X, Lu L, O’Neill M. A compact

SHA-256 architecture for RFID tags. In:

Proceedings of the 22nd IET irish signals

and systems conference, ISSC, Trinity

College Dublin; 2011.

[21] Patterson DA, Hennessy JL. Computer

organization and design – the

hardware/software interface. The Morgan

Kaufmann series in computer

architecture and design. Academic Press;

2012.

[22] Gueron S. Speeding up SHA-1, SHA-

256 and SHA-512 on the 2nd generation

Intel core processors. In: Ninth international

conference on Information

Technology: New Generations (ITNG),

2012; 2012. p. 824–6.

R. García et al. / Computers and Electrical

Engineering 40 (2014) 194–202 201

http://dx.doi.org/10.1007/
http://dx.doi.org/10.1007/
http://dx.doi.org/10.1007/
http://dx.doi.org/10.1007/

