
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 3, March 2015

426

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

Abstract— The main aim of this project is used to reduce the

test data volume and test application time by using hybrid

compression technique. Today the silicon densities increase day

by day, so it become very difficultly to test SOC, because it need

the large test pattern. To minimize on-chip storage besides

testing time, the test data volume is first reduced by compaction

in a hybrid manner. The method consists of two steps: Burrow

wheeler transform (BWT) and Huffman coding method. The

method uses a set of adaptive coding techniques for realizing

lossless compression. BWT is mainly used for the full scan chain

method. BWT is a block sorting lossless and reversible data

transform. It improves the efficiency of text compression

algorithm. The hybrid based compression scheme provides the

high compression ratio and fast testing time. It adapts any

coding efficiency of compression ratio. Testing SOC by using

reconfigurable compression techniques. Huffman coding

achieves the accuracy in high rate.

Index Terms— Automatic Test Equipment (ATE), Burrows–

Wheeler Transformation (BWT), Design-For-Testability (DFT),

Huffman Coding, Intellectual property (IP)

core, System-On-Chip (Soc) Test.

.

I. INTRODUCTION

An important objective to realize through elaborate

testing of very large scale integration (VLSI) circuits and

systems is to ensure that the manufactured products are free

from defects and simultaneously guarantee that they meet

deemed specifications.

In addition, the information collected during the test process

may help in an increase of the product yield by improving the

process technology with consequent lowering of the

production cost. The integrated circuit (IC) fabrication

process involves various steps, viz., photolithography,

printing, etching, and doping. Testing SOC is very

complexity because soc contain many IP cores. An SOC often

includes multiple types of circuitry, such as digital logic,

memories, and analog circuitry To reduce the complexity of

testing use the hybrid test vector compression to minimize the

Manuscript received March 2, 2015.

 V.Vinothini, M.E(VLSI DESIGN), Sri Shakthi Institute Of Engineering And

Technology.Madurai,India,

 S.Yamuna, Assistant professor, Sri Shakthi Institute Of Engineering And

Technology, Coimbatore, India.

test data volume and testing time by using the two method

BWT(Burrow Wheeler Transform) and Huffman coding.

Fig. 1. Block diagram of the proposed method.

As shown in Fig. 1, LFSR is generates the test pattern. Test

vector size is large. Frequency range separator is used to

separate the data into two frequency that is low frequency data

and high frequency data. High frequency data that contain

many non-matching pattern. The BWT is used to create more

matching pattern. The two frequency data is added then the

data is compressed by Huffman coding.

II. PROPOSED METHODOLOGY

Fig.1 shows the block diagram of the developed

technique. All the test vectors required for testing an SoC are

first compressed in software mode. The compressed test

vectors and an efficient decompression program are then

loaded into the embedded processor core of the SoC The

processor executes the decompression program and then

applies all the uncompressed original test vectors to each and

every core of the SoC for generating and analyzing the output

responses. In the execution of the proposed technique, the

undernoted four steps are involved.

 Testing SOC by Using Reconfigurable

Compression Techniques

V.VINOTHINI, S.YAMUNA

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 3, March 2015

427

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

A. Division of Test Data Into Blocks

All the test vectors are divided into several blocks of equal

size; the size of a block depends on the total number of bits

 in each vector.

Fig. 2. Original test vector divided into several blocks.

As shown in Fig. 2, test vector-1 has seven blocks of size four

bits each. The test vector-2 also has seven blocks of the same

size but all the bits in its second, third, and sixth blocks are the

same as that in the test vector-1.Similarly, the third, fourth,

and sixth blocks in the testvector-3 are the same as in the

test vector-2. If we have the information of the first, fourth,

aft, and seventh blocks in the test vector- 2 along with the

reference test vector-1, then, we can easily compute the entire

set of test vector-2. One of the test vectors is then considered

as a reference test vector and the next test vector is generated

from the previous vector by storing only those blocks that

differ from the previous one

B. Frequency Computation of Data Blocks

On completion of this block matching process, the high

frequency and low frequency blocks are separated for further

computation (viz., high frequency groups such as data sets in

columns 1, 5, and 7 and low frequency groups such as data

sets in columns 2, 3, 4, and 6 in Fig. 2).

Fig .3. Original test vector divided into several blocks.

As shown in Fig. 3,there will be lots of unspecified data

(represented by x for don’t care) that appear in practical

situations. Those data are redefined in such a way that we can

maximize the frequency of data block.

There are 28 test data sets for three test vectors that are

divided into seven blocks each. Since, there are only four data

sets in block of data; we can have 16 possible combinations

(viz., minterms) in each block. The frequency of a block is

determined by analyzing the number of unspecified data in all

the blocks. For example, the minterm 1001 is contained in

block numbers 2, 4, and 7 in the test vector-1. The same

minterm also appears in block number 4 of the

test vector-2 and in block number 2 of the

testvector-3, respectively. So, the frequency of 1001 in these

sets of test vectors is determined as 5.

C. Preprocessing of High Frequency Data Blocks

The BWT algorithm is executed on all high frequency blocks

of data. Burrows and Wheeler have

Fig. 4. Original set of strings (S 0) associated with the buffer

the details of a transformation function that opens the door to

some revolutionary new data compression techniques.BWT

converts a block of data into a format that is extremely well

suited from the standpoint of data compression. The BWT is

performed on an entire block of data, all at once. This

transformation takes a block of data and rearranges them

using a sorting algorithm known as lexicographical sorting.

The detail of the sorting process is explained as follows using

an example string DRDOBBS.

Fig.5 Set of strings after sorting.

As shown in Fig. 5,the resulting output block contains exactly

the same data elements that it started with, but differing only

in their ordering. This transformation is a reversible process,

meaning thereby that the original ordering of the data

elements can be restored with no loss of fidelity. Also, a block

of data transformed by BWT can be compressed using any or

a combination of standard techniques As shown in Fig. 5, the

matrix is formed by rotating the original sequence of the

string. Then, the matrix of Fig. 4is lexicographically sorted.

After sorting, the set of strings is arranged, as shown in Fig. 5.

Algorithm

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 3, March 2015

428

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

Step 1: Sort source outputs in decreasing order of their

probabilities.

Step 2: Merge the two least probable outputs into a single

output of which the probability is the sum of the

corresponding probabilities.

Step 3: If the number of remaining outputs is more than two,

go to Step 1.

Step 4: Arbitrarily assign 0 and 1 as codeword for the two

remaining outputs.

Step 5: If an output is the result of merger of two outputs in a

preceding step, append the current codeword with a 0 and a 1

to obtain the codeword of the preceding outputs and repeat

Step 5. If no output is preceded by another output in a

previous step, stop.

Huffman coding approximates the probability for each

character as a power of 1/2 to avoid complications associated

with using a non-integral number of bits to encode characters

using their actual probabilities. Huffman coding works on a

list of weights {wi } by building an extended binary tree with

minimum weighted path length and proceeds by finding the

two smallest ws, w1, and w2, viewed as external nodes, and

replacing them with an internal node of weight w1+ w2.

III. SOFTWARE REQUIREMENTS

A. Modelsim se 6.3f

In this paper the Models SE 6.3f software is used for

simulation and verification. Models is a verification and

simulation tool for VHDL, Verilog, SystemVerilog, and

mixed- language designs. ModelSim’s architecture allows

platform independent compile with the outstanding

performance of native compiled code.

The basic simulation flow is given by working libraries,

Compile design files, Load and run simulation, Debug results.

ModelSim offers numerous tools for debugging and analyzing

the design. The project flow for Modelsim is given by Create

a project, add files to the project, compile the project, run the

simulation, Debug the results

IV. RESULT

Fig.6 Encode LFSR output

V. CONCLUSIONS

The compression method presented herein is based on a

hybrid technique that targets the unique characteristics of the

block matching test data compression, BWT along with

several coding algorithms on test data sequences. The BWT

reduces the number of transitions for the test vector

sequences, reduce the delay and test data volume size.

Although, BWT involves a very complex method of

computation and takes a longer time for compression, the

reverse process is very simple and quite faster. It improves the

efficiency of text compression algorithm. The hybrid based

compression scheme that provides the high compression ratio

and achieve the output with high accuracy. This technique

achieved the high fault coverage. The activity of hybrid test

data set is less than original test data.

REFERENCES

[1] M. Abramovici, C. Stroud, and M. Emmert, ―Using

embedded FPGAs for SoC yield improvement,‖ in Proc.

Des. Autom. Conf., 2002, pp. 713–724.

[2] K. Basu and P. Mishra, ―Test data compression using

efficient bitmask and dictionary selection methods,‖ IEEE

Trans. VLSI Syst., vol. 18, no. 9, pp. 1277–1286, Sep. 2010.

[3] S. Biswas and S. R. Das, ―A software-based method for

test vector compression in testing system-on-a-chip,‖ in

Proc. IEEE Instrumen. Meas. Technol. Conf., Apr. 2006, pp.

359–364.

[4] S. Biswas, S. R. Das, and E. M. Petriu, ―Space compactor

design in VLSI circuits based on graph theoretic concepts,‖

IEEE Trans. Instrumen. Meas., vol. 55, no. 4, pp.

1106–1118, Aug. 2006.

[5] M. Burrows and D. J. Wheeler, ―A block-sorting lossless

data compression algorithm,‖ Digit. Syst. Res. Center, Palo

Alto, CA, USA, Tech. Rep. 124, 1994..

[6] A. El-Maleh, S. Al Zahir, and E. Khan,

―Ageometric-primitives-based compression scheme for

testing system-on-a-chip,‖ in Proc. VLSI Test Symp., 2001,

pp. 54–58.

[7] V. Groza, R. Abielmona, and M. H. Assaf, ―A

self-reconfigurable platform for built-in self-test

applications,‖ IEEE Trans. Instrumen. Meas., vol. 56, no. 4,

pp. 1307–1315, Aug. 2007.

[8] M. Ishida, D. S. Ha, and T. Yamaguchi, ―COMPACT: A

hybrid method for compressing test data,‖ in Proc. VLSI

Test Symp., 1998, pp. 62–69.

[9] V. Iyengar, K. Chakraborty, and B. T. Murray, ―Built-in

self testing of sequential circuits using precomputed test

sets,‖ in Proc. VLSI Test Symp., 1998, pp. 418–423.

 [10] A. Jas, J. G. Dastidar, and N. A. Touba, ―Scan vector

compres-sion/decompression using statistical coding,‖ in

Proc. VLSI Test Symp., 1999, pp. 114–120.

BIOGRAPHIES

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

 Volume 4, Issue 3, March 2015

429

ISSN: 2278 – 909X All Rights Reserved © 2015 IJARECE

First Author.

Second Author

V.Vinothini received the B.E.

degree from Latha mathavan

Engineering College Madurai,

India in 2012 and doing Masters

of Engineering in VLSI Design

at Sri Shakthi Institute of

Engineering and Technology,

Coimbatore, India .Her research

interests include Body Genetic

Algorithm, VLSI Design, VLSI

testing.

D S.Yamuna received the

B.E. degree from Tamilnadu

College of Engineering

Coimbatore, India, in 2012,

the M.E degree from Sri

Shakthi Institute of

Engineering and Technology,

Coimbatore, Indian in

2014.She is currently an

Assistant Professor with the

Department of Electronics and

Communication Engineering,

Sri Shakthi Institute of

Engineering and Technology,

Coimbatore. Her research

interests include functional

verification, VLSI Design,

VLSI testing, and Low Power

of VLSI Circuits.

