A FORWARDERS GUIDANCE BASED BROADCAST
PROTOCOL FOR ENERGY EFFICIENT WIRELESS SENSOR
NETWORKS

Priyadharshini.B1, Sakthivel.S2

1PG Scholar, Dept of ECE, Vivekanandha College of Engineering for Women
2Assistant Professor, Dept of ECE, Vivekanandha College of Engineering for Women

ABSTRACT:

We propose an efficient multihop broadcast protocol for WSNs (EMBA). EMBA operates on asynchronous MAC protocols and uses two techniques of the forwarder’s guidance and the overhearing of broadcast messages and ACKs to minimize redundant transmissions. As a result, EMBA shows good performance even in dense networks.

PROBLEM EXISTING:

Most sleep scheduling protocols today in WSNs utilize duty-cycling which allows a sensor node to alternate between active and sleeping states to reduce energy consumption. Synchronous sleep scheduling approaches synchronize neighboring nodes before data transmissions to reduce energy consumption. Synchronous MAC protocols achieve comparable energy efficiency by reducing idle listening time, but extra complexity and overhead are required for synchronization.
Asynchronous approaches reduces energy consumption by turning off the radio between samples. Asynchronous sleep scheduling approaches, however, are inherently weak for supporting multihop broadcast due to independent wake up time of each sensor node. Every node wakes up according to its own duty cycle schedule, and it means that it is hard for one broadcast transmission to reach multiple neighbor nodes. To support multihop broadcast in asynchronous sleep scheduling approaches, a node should use independent unicast transmissions as many as the number of its neighbor nodes. This causes redundant transmissions of the same broadcast messages. In addition, collisions frequently occur when a node simultaneously receives the same broadcast messages from multiple senders. These vulnerabilities lead to significant energy dissipation and delayed propagation of broadcast messages. Therefore, the complexity of multihop broadcast in asynchronous environments is substantial.

PROPOSED SYSTEM:

In this approach, we propose an efficient multihop broadcast protocol for WSNs (EMBA). EMBA operates on asynchronous MAC protocols and uses two techniques of the forwarder’s guidance and the overhearing of broadcast messages and ACKs. The proposed protocol enables sensor nodes to efficiently support multihop broadcast by using collision and redundant transmission avoidance. EMBA achieves much higher energy efficiency and smaller message cost in both sparse and dense networks.

The proposed EMBA efficiently supports the multihop broadcast in sparse networks by using (i) the forwarder’s guidance. In addition, EMBA makes good use of (ii) the overhearing of broadcast messages and ACKs to minimize redundant transmissions. As a result, EMBA shows good performance even in dense networks.

MODULES:

1. Topology formation
2. Forwarder’s Guidance
3. Overhearing of Broadcast Messages and ACKs
4. Handling of Network Failure

TOPOLOGY FORMATION

In this phase constructing project design in ns2 should take place. Initially the Base Station will broadcasts Topology-
Discovery packets to all the sensor, which makes each sensor should be aware of its local topology namely neighboring nodes, and paths to reach base station.

FORWARDER’S GUIDANCE

EMBA can significantly reduce redundant transmissions and collisions by using the forwarder’s guidance. In multihop broadcast, a forwarder sends broadcast message i, BPKT i, to each neighbor node r. Node r prepares to work as a new forwarder after receiving BPKT i.

Overhearing of Broadcast Messages and ACKs. EMBA adopts another technique of the overhearing of broadcast messages and ACKs. If a forwarder overhears BPKT i or ACK i destined to a certain node during an active state, it can eliminate the ID(s) of the node(s) specified in the message from its obligation set. Therefore, the number of transmissions required for covering of neighbor nodes will be reduced.

HANDLING OF NETWORK FAILURE

EMBA makes the best effort to avoid transmissions over poor links. Nevertheless, a message can be lost in the air either due to a collision or a link error. To support reliable multihop broadcast, EMBA follows the network failure resolving mechanism of the MAC protocol cooperated with itself.
CONCLUSION

we have proposed an efficient multi-hop broadcast protocol for asynchronous duty-cycled WSNs (EMBA). EMBA can support multi-hop broadcast efficiently by using two techniques of the forwarder’s guidance and the overhearing of broadcast messages and ACKs. The forwarder’s guidance significantly reduces redundant transmissions and collisions in polygonal topologies such as triangle (3-gon) and quadrangle (4-gon). This technique greatly improves the energy efficiency in sparse networks by reducing duty cycle. The overhearing of broadcast messages and ACKs helps to reduce the number of transmissions. This simple technique minimizes the active time of forwarders, which is more efficient in dense networks. EMBA shows much higher energy efficiency in both sparse and dense networks compared to the conventional protocols such as ADB and RI-MAC broadcast. EMBA significantly improves the energy efficiency by 2.2– 3 times compared to ADB and by 2.5 – 3.3 times compared to RI-MAC broadcast. EMBA also shows better performance of the message cost than the conventional protocols in terms of the message cost ratio(MCR) and the average number of bytes transmitted. Therefore, we have concluded that EMBA achieves much higher energy efficiency and message cost.

REFERENCE