Exploiting A New Turbo Decoder Technique For High Performance LTE In Wireless Communication

Sangeetha V, Lalithambigai M

Abstract— Turbo Decoder plays a significant role in today’s 4G networks. This work focuses on Encoding and Decoding process by using Turbo Decoding techniques. The Maximum A Posteriori (MAP) probability decoders, which are intrinsic building-blocks of parallel turbo decoders. The Logarithmic –Bahl –Cocke–Jelinek–Raviv (LBCJR) algorithm used in MAP decoders. It presents with an ungrouped backward recursion technique for the computation of backward state metrics. Unlike the conventional decoder architectures, this technique can be extensively pipelined and retimed to achieve higher clock frequency. Additionally, the state metric normalization technique employed in the design of an Add-Compare-Select-Unit (ACSU) has reduced critical path delay of decoder architecture and we can replace normal adder into Carry look-ahead adder it will increase the speed of LTE and LTE-advanced.

Index Terms—ACSU, CE, CLA, LBCJR algorithm, LTE, MAP, Trellis Graph, Turbo Decoder.

I. INTRODUCTION

LTE, an abbreviation for Long-Term Evolution, commonly marketed as 4G LTE, is a standard for wireless communication of high-speed data for mobile phones and data terminals. It is based on the GSM/EDGE and UMTS/HSPA network technologies, increasing the capacity and speed using a different radio interface together with core network improvements. The standard is developed by the 3GPP (3rd Generation Partnership Project).

LTE is the natural upgrade path for carriers with both GSM/UMTS networks and CDMA2000 networks. The different LTE frequencies and bands used in different countries will mean that only multi-band phones will be able to use LTE in all countries where it is supported.

Although marketed as a 4G wireless service, LTE (as specified in the 3GPP Release 8 and 9 document series) does not satisfy the technical requirements the 3GPP consortium has adopted for its new standard generation, and which were originally set forth by the ITU-R organization in its IMT-Advanced specification. However, due to marketing pressures and the significant advancements that WiMAX, HSPA+ and LTE bring to the original 3G technologies, ITU later decided that LTE together with the aforementioned technologies can be called 4G technologies. The LTE Advanced standard formally satisfies the ITU-R requirements to be considered IMT-Advanced. To differentiate LTE Advanced and WiMAX- Advanced from current 4G technologies

3GPP-LTE-Advanced standard has appeared with the aid of powerful technique like carrier aggregation. This standard supports a peak data rate of 1 Gbps specified by the International –Telecommunication –Union -Radio communication -Sector (ITUR) for the International -Mobile Telecommunications -Advanced (IMT-A), which is also referred as fourth-generation (4G) [3]. Eventually, enhanced use of multi-antenna techniques and support for relay nodes in the LTE-Advanced air-interface have made its new releases capable of supporting peak data rate(s) of 3 Gbps milestone. For reliable and error-free communication in these recent standards, turbo code has been extensively used because it delivers near-optimal bit-error-rate (BER) performance [5]. However, the iterative nature of turbo decoding imposes adverse effect which defers turbo decoder from achieving high-throughput benchmarks of the latest wireless communication standards. On the other hand, extensive research on the parallel architectures of turbo decoder has shown its promising capability to achieve higher throughput, albeit, at the cost of large silicon-area [6]. Parallel turbo decoder contains multiple Maximum A Posteriori (MAP) probability decoders, contention-free interleavers, memories and interconnecting networks. Maximum achievable throughput of such P radix 2\^ω decoder with radix- MAP decoders for a block length of N and a sliding window size of M is given as

\[
\delta T = \frac{p \times \omega \times F}{z^2 p} + \frac{Z \times M}{(z + 2) \times \omega + \delta_{map} + \delta_{ext} + \delta_{dec}} \tag{1}
\]

where Z = N/M, F is a maximum operating clock frequency, \(p\) represents a number of decoding iterations \(\delta_{map}\), is a pipeline delay for accessing data from memories to MAP decoders, \(\delta_{ext}\) is a pipeline delay for writing extrinsic information to memories, and \(\delta_{dec}\) is a decoding delay of MAP decoder [7]. This expression

\[\text{ISSN: 2278 – 909X} \quad \text{All Rights Reserved © 2015 IJARECE} \quad 834\]
suggests that the achievable throughput of parallel turbo decoder has dominant dependencies on number of MAP decoders, operating clock frequency and number of decoding iterations. Thereby, valuable contributions have been reported to improve these factors. An implementation of parallel turbo decoder which uses retimed and unified radix 2^d MAP decoders, for Mobile WiMAX (worldwide-interoperability-for-microwave-access) and 3GPP-LTE standards, is presented in [8]. Similarly, parallel architecture of turbo decoder with contention-free interleaver is designed for higher throughput applications. For 3GPP-LTE standard, reconfigurable and parallel architecture of turbo decoder with a novel multistage interconnecting network. Recently, a peak data rate of 3GPP-LTE standard has been achieved by parallel turbo decoder. Subsequently, a processing schedule for the parallel turbo decoder has been proposed to achieve 100% operating efficiency, high throughput parallel turbo decoder based on the algebraic-geometric properties of Quadratic-Permutation-Polynomial (QPP) interleaver has been proposed. An architecture incorporating a stack of 16 MAP decoders with an optimized state-metric initialization scheme for low decoder latency and high throughput. Another contribution which includes a very high throughput parallel turbo decoder for LTE-Advanced base station. Recently, a novel hybrid decoder-architecture of turbo Low-Density-Parity-Check (LDPC) codes for multiple wireless communication standards.

Based on the comprehensive overview of recent standards for wireless communication, primary motive of our research is to conceive an architecture of turbo decoder for high throughput application. We have focused on an improvement of maximum clock frequency (F) which eventually improves an achievable throughput of parallel turbo decoder from (1). So far, no work has reported parallel turbo decoder that can achieve higher throughput beyond 3Gbps milestone targeted for the future releases of 3GPP-LTE-Advanced.

1) We propose a modified MAP-decoder architecture based on a new ungrouped backward recursion scheme for the sliding window technique of the Logarithmic-Bahl–Cocke–Jelinek–Raviv (LBCJR) algorithm and a new state metric normalization technique. The suggested techniques have made provisions for retiming and deep-pipelining in the architectures of the State-Metric-Computation-Unit (SMCU) and MAP decoder, respectively, to speed up the decoding process.

2) As a proof of concept, an implementation in 90nm CMOS technology is carried out for the parallel turbo decoder with 8 radix-2 MAP-decoders which are integrated with memories via pipelined interconnecting networks based on contention-free QPP interleavers. It is capable of decoding 188 different block lengths ranging from 40 to 6144 with a code-rate of 1/3 and achieves more than the peak data rate of 3GPP-LTE. We have also carried out synthesis-study and postlayout simulation of a parallel turbo decoder with 64 radix-2 MAP decoders that can achieve the milestone throughput of 3GPP-LTE-Advanced.

3) In this paper, we can replace normal adder into Carry Look-Ahead Adder[12]. In this CLA is used to increase the speed of the circuit in this 3GPP-LTE-Advanced wireless communication standards.

II. TRANSMITTER AND RECEIVER

Transmitter and receiver sections of a wireless gadget which supports 3GPP-LTE/LTE Advanced standards. Fig. 1(a). shows transmitter block. Each of these sections has three major parts:
- digital-baseband module,
- analog-RF module
- multiple-input-multiple-output (MIMO) antennas

In Fig (c), shows digital-baseband module of transmitter, sequence of information bits $U_k = \{1,2,3,...,N\}$ is processed by various submodules and is fed to the encoder. It generates a systematic bit x_{sk}, parity bits x_{pk} and x_{pk} for each information bit using convolutional-encoders (CEs) and I (QPP- interleaver). These encoded bits are further processed by remaining submodules; finally, the transmitted digital data from baseband are converted into quadrature and inphase analog signals by a digital-analog-converter (DAC). Analog signals, those are fed to the multiple analog-RF modules, are up-converted to a RF frequency, amplified, band passed and transmitted via MIMO antennas which transform RF signals into electromagnetic waves for the transmission through wireless channel. At the receiver, Fig 1(b) shows RF signals provided by multiple antennas to analog-RF modules are band-pass filtered to extract signals of the desired band, then they are low-noise-amplified and down-converted into baseband signals.
Subsequently, these signals are sampled by Analog-Digital-Converter (ADC) of the digital-baseband module, where various submodules process such samples and are fed to the soft-demodulator. It generates a priori logarithmic-likelihood-ratios (LLRs) λ_{sk}, λ_{s1k} and λ_{s2k} for the transmitted systematic and parity bits, respectively, x_{sk}, x_{p1k} and x_{p2k} are fed to turbo decoder via serial-parallel converter. Turbo decoders work on graph based approach and are parallel concatenation of MAP decoders, as shown in Fig. 1(a). Basically, the MAP decoder uses BCJR algorithm to process input a priori LLRs and then determine the values of a posteriori LLRs for the transmitted bits. Extrinsic information values are computed as

$$\lambda_{sk} = L_{1k}(U_k) - \lambda_{s2k}^2$$ \hspace{1cm} (2)

and

$$\lambda_{s1k} = L_{2k}(U_k) - \lambda_{s1k}^2$$ \hspace{1cm} (3)

where $L_{sk}(U_k)$ and $L_{2k}(U_k)$ are a posteriori LLRs from MAP decoders; λ_{s2k}^d and λ_{s1k}^i are de-interleaved and interleaved values, respectively, of the extrinsic information. As shown in Fig.1(a), the values of extrinsic information are iteratively processed by MAP decoders to achieve near-optimal BER performance. Finally, a posteriori LLR values, those are generated by turbo decoder, are processed by rest of the baseband submodules. Ultimately, a sequence of decoded bits is obtained, as shown in Fig. 1(a). On the other hand, conventional BCJR algorithm for MAP decoding includes mathematically complex computations. It delivers near-optimal error-rate performance at the cost of huge memory and computationally intense VLSI (very-large-scale-integration) architecture, which imposes large decoding delay. These shortcomings have made this algorithm inappropriate for practical implementation.

Logarithmic transformations of miscellaneous mathematical equations involved in BCJR algorithm have scaled down the computational complexity as well as simplified its architecture from an implementation perspective, and such procedure is referred as logarithmic-BCJR (LBCJR) algorithm. Furthermore, huge memory requirement and large decoding delay can be controlled by employing sliding window technique for LBCJR algorithm. This is a trellis-graph based decoding process in which N stages are used for determining a posteriori LLRs

$$L_k(U_k) \forall k = \{1,2,3,...,N\}$$

where each stage comprises of N_x trellis states. LBCJR algorithm traverses forward and backward of this graph to compute forward $\alpha_k(x_k)$ as well as backward $\beta_k(x_k)$ state metrics, respectively, for each trellis state such that $k \in N$ and $x \in N_x$. As shown in Fig. 1(c), for states S_5 and S_9, forward and backward state metrics during their respective traces are computed as

$$\alpha_k(x_k) = \max \left[\alpha_{k-1}(x_k) + \gamma_k(x_{k-1}), \alpha_{k-1}(x_k) + \gamma_k(x_{k+1}), \alpha_{k-1}(x_k) + \gamma_k(x_{k+2}) \right]$$

$$\beta_k(x_k) = \max \left[\beta_{k+1}(x_k) + \gamma_k(x_{k+1}), \beta_{k+1}(x_k) + \gamma_k(x_{k+2}) \right]$$

respectively, where \max a logarithmic approximation which simplifies mathematical computations of BCJR algorithm. Based on max-log-MAP approximation, this function operates as

$$\max(A,B) = \max(A,B) + \ln(A,B) + \ln(1 + e^{-|A-B|})$$

Similarly, log-MAP approximation computes \max as

$$\max(A,B) = \max(A,B) + \ln(A,B) + \ln(1 + e^{-|A-B|})$$

III. PROPOSED THECNIQUES

A. Modified Sliding Window Approach

This approach for LBCJR algorithm is based on an ungrouped backward recursion technique. Unlike the conventional SW-LBCJR algorithm, this technique performs backward recursion for each trellis stage, independently, for the computation of backward state metrics. For a sliding window size of M, such an ungrouped backward recursion for kth stage begins from $(K-M+1)$th stage in the trellis graph. Each of these backward recursions is initiated with logarithmic-equieprobable values assigned to all the backward state metrics of $(K+M-1)$th trellis stage as

$$\beta_{k+M-1}(x) = \frac{1}{N_x} \quad \forall j \in N_x$$ \hspace{1cm} (5)

Simultaneously, the branch metrics are computed for successive trellis stages and are used for determining the state metric values using (2). After computing N_x backward state metrics of th trellis stage by an ungrouped backward recursion, all the forward state metrics of $(k-1)$th trellis stage are computed.
It is to be noted that the forward recursion starts with an initialization at $k=0$ such that
\begin{equation}
\alpha_{k=0}(s) = 0 \quad \forall i = 0 \quad \text{and} \quad \alpha_{k=0}(s) = -\infty \quad \forall i \neq 0
\end{equation}

Fig. 2(a) illustrates the suggested ungrouped backward recursions for LBCJR algorithm with a value of $M=4$. It shows the computation of backward state metrics for $k=1$ and $k=2$ trellis stages. First ungrouped backward recursion (denoted as $u=1$) starts with the computation of $\{B_{k=1}\}^{t=1}$ using the initialized backward state metrics from trellis stage. Thereafter, $\{B_{k=2}\}^{t=1}$ is computed using $\{B_{k=1}\}^{t=1}$; finally, an effective set of backward state metric $\{B_{k=2}\}^{t=1}$, which is then used in the computation of a posteriori LLR for $k=1$ trellis stage, is obtained using the value of $\{B_{k=2}\}^{t=1}$. Similarly, such successive process of second ungrouped backward recursion ($u=2$) is carried out to compute an effective-set of $\{B_{k=2}\}^{t=2}$ for $k=2$ trellis stage, as shown in Fig. 2(a). In this suggested-approach, time-scheduling of various operations to be performed for the computation of successive a posteriori LLRs is schematically presented in Fig. 2(b). This scheduling is illustrated for $M=4$, where the trellis stages and time intervals are plotted along y-axis and x-axis respectively. An ungrouped backward recursions begin from the time interval t_1 to t_2 because the branch metrics required for these recursions are available from this interval onward. Thereby, referring Fig. 2(b), operations performed from this interval onward are systematically explained as follows.

- t_1: A first ungrouped backward recursion (denoted by $u=1$) begins with the computation of $\{B_{k=1}\}^{t=1}$ which uses the initialized backward state metrics from trellis stage. Since, this backward recursion is performed to compute an effective-set of backward state metrics for $k=1$, it is started from $(k+M-1)=4$th trellis stage.
- t_2: A consecutive-set $\{B_{k=2}\}^{t=1}$ is computed for the continuation of first ungrouped backward recursion. Simultaneously, a second ungrouped backward recursion starts from the initialized trellis stage $k=5$ with the computation of a new-set $\{B_{k=4}\}^{t=1}$.
- t_3: First ungrouped backward recursion ends in this interval with the computation of effective-set $\{B_{k=2}\}^{t=2}$ for $k=1$ trellis stage. In parallel, second ungrouped backward recursion continues with the computation of consecutive- set $\{B_{k=3}\}^{t=2}$. Similarly, a new-set $\{B_{k=5}\}^{t=2}$ is computed and it marks the start of third ungrouped backward recursion. Initialization of all the forward state metrics of set $A_{k=5}$ is also carried out.
- t_4: An effective-set $\{B_{k=4}\}^{t=2}$ is obtained with the termination of second ungrouped backward recursion and a consecutive-set $\{B_{k=3}\}^{t=2}$ is computed for an ongoing third ungrouped backward recursion. Simultaneously, fourth ungrouped backward recursion begins with the computation of a new-set $\{B_{k=5}\}^{t=4}$. Using an initialized set $A_{k=5}$, a set of forward state metrics $A_{k=5}$ is determined. A posteriori LLR value $L_{t_5}^{t_1}(U_k)$ of the trellis stage is computed using forward, backward and branch metrics from the sets $A_{k=5}$ and $\{B_{k=4}\}^{t=4}$ respectively.
- t_5: From this interval onward, similar pattern of operations are carried out for each time-interval where an ungrouped backward recursion is terminated with the calculation of an effective-set; a consecutive-set is obtained to continue an incomplete ungrouped backward recursion and a new-set is determined using the initialized values of backward state metrics to start an ungrouped backward recursion. Simultaneously, sets of forward state metrics and a posteriori LLRs for successive trellis stages are obtained from t_5 interval onward.

Decoding delay ∂_{dec} for the computation of a posteriori LLRs for $M=4$ is a sum of seven time-intervals as shown in Fig. 2(b). Thereby, it can be concluded that the decoding delay of this approach is $\partial_{dec} = (2 \times T_{\text{rev}}) - 1$. It has been observed that from t_5 interval onward, three $\{B_{k}\}^{t}$ sets are simultaneously computed in each interval. Thereby, in general, this approach requires $M-1$ units to accomplish such parallel task of ungrouped backward recursion.

\section*{B. State Metric Normalization Technique}

Magnitudes of forward and backward state metrics grow as recursions proceed in the trellis graph. Overflow may occur without normalization, if the data widths of these metrics are finite. There are two commonly used state metric normalization techniques:

- subtractive
- modulo normalization

In the subtractive normalization technique, normalized forward and backward state metrics for Kth trellis stage. On the other side, two’s complement arithmetic based modulo normalization technique works with a principle that the path selection process during forward/backward recursion depends on the bounded values of path metric difference.

The normalization technique suggested in our work is focused to achieve high-speed performance of turbo decoder from an implementation perspective. Assume that s_x and s_y states at $(k-1)$th stage as well s_x'' and s_y'' states at $(k+1)$th stage are associated with s_x state at kth stage in a trellis graph.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{(a) ACSU for modulo normalization technique. (b) An ACSU for suggested normalization technique. (c) An ACSU for subtractive normalization technique. (d) Part of a trellis graph with $N_5 = 8$ showing $(k-1)$th and kth trellis stages and metrics involved in the computation of forward state metric}
\end{figure}
IV. DECODER ARCHITECTURE AND SCHEDULING

We next present the MAP-decoder architecture and its scheduling based on the proposed techniques. Detail discussion on the design of high-speed MAP decoder, and its implementation trade-offs, are carried out. Furthermore, parallel architecture of turbo decoder and QPP interleaver used in this work are presented.

Fig. 4. (a) High-level architecture of the proposed MAP decoder, based on modified sliding window technique, for M=4. (b) Launched values of state and branch metric sets as well as a posteriori LLRs by different registers of MAP decoder in successive clock cycles.

A. Map-Decoder Architecture And Scheduling

Decoder architecture for LBCJR algorithm based on an ungrouped backward recursion technique is shown in Fig. 4(a). Basically, it includes five major subblocks:
- BMCU (Branch Metric-Computation-Unit)
- ALCU (A Posteriori-LLR-Computation-Unit)
- RE (Registers)
- LUT (Look-Up-Table)
- SMCU (State Metric Computation Unit)

SMCU that uses suggested state metric normalization technique. The BMCU processes n a priori LLRs of systematic and parity bits

\[\lambda_{nk}, \lambda_{nk}, \ldots, \lambda_{nk} \]

Where, \(n \) is a code-length, to successively compute all the branch metrics in each of the sets \(\Gamma_k \). A posteriori LLR for th trellis stage is computed by ALCU using the sets of state and branch metrics, as shown in Fig. 4(a). Subblock RE is a bank of registers used for data-buffering in the decoder. LUT stores the logarithmic equiprobable values, as given in (6), for backward state metrics of \((k+M-1)th\) trellis stage which initiates an ungroup backward recursion for \(k\) th trellis stage. As discussed earlier, SMCU computes \(N_m \) forward or backward state metrics of a trellis stage. Based on the time-scheduling that is illustrated in Fig. 2(b), we have presented an architecture of MAP decoder for \(M=4 \) in Fig. 4(a). Thereby, three (M-1) SMCUs are used for ungrouped backward recursions in this decoder architecture and are denoted as SMCU1, SMCU2 and SMCU3.

Similarly, forward state metrics for successive trellis stages are computed by SMCU4. For better understanding of the decoding process, a graphical representation of data launched by different registers, those are included in the decoder architecture, for successive clock cycles are illustrated in Fig. 4(b). In this decoder architecture, input a priori LLRs as well as a priori information \(L_{nk} \) for the successive trellis stages are sequentially buffered through RE1 and then processed by BMCU, which computes all the branch metrics of these stages, as shown in Fig. 4(a). These branch metric values are buffered through a series of registers and are fed to SMCUs for backward recursion, SMCU4 for forward recursion and ALCU for computation of a posteriori LLRs. In the fifth clock cycle, branch metrics of set \(\Gamma_k \) are launch from RE2 and are used by SMCU1 along with the initial values of backward state metrics from LUT to compute backward state metrics of \(\{B_{nk}\}_{k=1}^{M} \), for the first ungrouped backward recursion, and then stored in RE8, as shown in Fig. 4(b). These stored values of RE8 are launched in the sixth clock cycle and are fed to SMCU2 along with a branch metric set \(\Gamma_{k+1} \) from RE4, to compute a set \(\{B_{nk}\}_{k=1}^{M} \) which is then stored in RE9. In the same clock cycle, computation of \(\{B_{nk}\}_{k=2}^{M} \), for second ungrouped backward recursion, can be computed by SMCU1 using \(\Gamma_{k-1} \) launched by RE2, and store them in RE8. Both these sets of backward state metrics are launched by RE8 and RE9 in the seventh clock cycle, as illustrated in Fig. 4(b). It can be seen that similar pattern of computations for branch and state metrics are carried out for successive trellis stages, referring Fig. 4(a) and (b). By using branch metric sets from RE11, SMCU4 is able to compute sets of forward state metrics \(A_k \), for successive trellis stages. The sets of forward state, backward state and branch metrics via RE13, RE10, and RE12, respectively, are fed to ALCU, as shown in Fig. 4(a). Thereby, a posteriori LLRs are successively generated by ALCU from the ninth clock cycle onward, for the value of \(M=4 \), as shown in Fig. 4(b). Henceforth, from an implementation perspective, the decoding delay \(d_{dec} \) of this MAP decoder is \(2 \times M \) clock cycles.

B. Retimed And Deep-Pipelined Decoder Architecture
In the suggested MAP-decoder architecture, SMCU4 with buffered feedback paths is used in forward recursion and it imposes a critical path delay of from (11). On the other hand, SMCU4 architecture can be retimed to shorten this critical path delay. For a trellis-graph of, retimed dataflow- graph of SMCU with buffered feedback paths for computing the forward state metrics of successive trellis stages is shown in Fig. 5(a). It has four ACSUs based on suggested state metric normalization technique and they compute forward state metrics using normalizing factor. However, this retimed data-flow-graph based architecture operates with a clock that has double the frequency of clock at which the branch metrics are fed, as shown in Fig. 5(b). Otherwise, it may miss the successive forward state metrics from th stage to compute state metrics for th trellis stage. It can be seen that the critical path of this SMCU has only a subtractor delay, thereby; this retimed-unit can be operated at higher clock frequency.

An advantage of the suggested MAP decoder architecture is that the SMCUs for backward recursion process can also be pipelined. This increases a data-processing frequency at which the branch metrics are fed to retimed SMCU that is already operating at higher clock frequency. However, such retimed SMCU is not suitable for conventional MAP decoder because the SMCUs for backward recursion in such decoder-design have feedback architectures. Thereby, they cannot be pipelined to enhance the data-processing frequency, though the retimed SMCU are operating at higher clock frequency [11].

1) High-Speed Map Decoder Architecture
In this work, we have presented architecture of MAP decoder for turbo decoding, as per the specifications of 3GPP-LTE/LTE-Advanced [3]. It has been designed for an eight-state convolutional encoder with a transfer function of \((1 + D + D^2)/ (1 + D^2 + D^3) \).

2) Multiclock Domain Design
In the suggested multiclock design of decoder architecture, it is essential to synchronize the signals crossing between clock domains. Fig.7(a) shows two clock domains of high-speed MAP-decoder architecture: DPU (Deep-Pipelined-Unit) and RSMCU. DPU includes all the feed-forward units and is operated with a clock clk1, and RSMCU is fed with another clock clk2 which has twice the clock frequency of clk1. In this design, set of branch metrics \(\Gamma_k \) and set of forward state metrics \((A_k) \) are the signals crossing from lower-to-higher and higher-to-lower clock-frequency domains respectively.

3) Implementation Trade-Offs
Deep-pipelined MAP-decoder architecture of our work has a lower critical path delay and is suitable for high-speed applications. However, the affected design-metric is its large silicon-area due to the requirement of SMCUs for ungrouped backward recursions.

C. Parallel Turbo-Decoder Architecture
With an objective of designing a high-throughput parallel turbo decoder that meets the benchmark data-rate of 3GPP specification [3], we have used a stack of MAP decoders with multiple memories and interconnecting-networks (ICNWs). Parallel turbo decoder achieves higher throughput as it simultaneously processes N/P input a priori LLRs in each time instant and reduces the decoding delay of every half-iteration [6].
For 188 different block lengths of 3GPP-LTE/LTE-Advanced, one of the parallel configuration P, such that $P \in \{1, 2, 4, 8, 32, 64\}$, can be used for turbo decoding [3]. In this work, a parallel configuration of has been used for a code-rate of 1/3, as shown in Fig. 8(a).

It can be seen that the input *a priori* LLRs, and are channeled into three different banks of memories. Each bank comprises of eight memories (MEM1 to MEM8) and *a priori* LLRs and a maximum value of $N=6144$, these banks store 126 kB of data. These stored *a priori* LLR values are fetched in each half-iteration and are fed to the stack of 8 MAP decoders.

As shown in Fig. 8(a), memory-bank for λ_{1k} is connected with 8 MAP decoders via ICNW. Multiplexed LLR values from memory-banks of λ_{1k} and λ_{2k} are also fed to these MAP decoders. It is to be noted that the ICNW is used for an interleaving phase while turbo decoding.

Fig.7.(a) Parallel turbo decoder architecture with 8 MAP decoders.

Fig.7.(b) Pipelined ICNW (interconnecting-network) based on Batcher network (vertical dashed lines indicate the orientation of register delays for pipelining).

As shown in Fig. 8(a), memory-bank for λ_{2k} is connected with 8 MAP decoders via ICNW. Multiplexed LLR values from memory-banks of λ_{1k} and λ_{2k} are also fed to these MAP decoders. It is to be noted that the ICNW is used for an interleaving phase while turbo decoding.

In this work, we have used an area-efficient ICNW which is based on the master–slave Batcher network [11]. In addition, this ICNW has been pipelined to maintain the optimized critical path delay of MAP decoder. Fig. 7(b) shows the ICNW used in this work with nine pipelined stages. The AGUs in ICNW generates contention free pseudorandom addresses of quadratic-permutation-polynomial (QPP) interleaver based on

\[\Pi(i) = \{ (f_2^1 \times s \times K) + (f_2^3 \times s^2 \times K^2) + (2 \times f_2^1 \times s \times K \times i) + (f_2^0) \} \]

Where $i = \{1, 2, 3, ..., K\}$, $k = \left[\frac{s^i}{s^j} \right]$, and $s = \{1, 2, 3, ..., K\}$ for AGU0 to AGU7 respectively [10]. Similarly, f_1 and f_2 are the interleaving factors whose values are determined by the turbo block length of 3GPP standards [3].

Addresses generated by AGUs are fed to the network of master-circuits, denoted by “M” in Fig. 7(b), which generate select signals for the network of slave-circuits, denoted by “S.” Data-outputs from the memory-bank are fed to slave network and are routed to 8 MAP decoders. Stack of MAP decoders and memories MEX1 to MEX8, for storing extrinsic information, are linked with ICNW. For the eight-bit quantized extrinsic information, 48 kB of memory is used in the decoder architecture. During the first half-iteration, the input *a priori* LLR values λ_{1k} and λ_{2k} are sequentially fetched from memory-banks and are fed to 8 MAP decoders. Then, the extrinsic information produced by these MAP decoders is stored sequentially. Thereafter, these values are fetched and pseudorandomly routed to MAP decoders using ICNW and used as *a priori*-probability values for the second half-iteration. Simultaneously, λ_{4k} soft values are fed pseudorandomly via ICNW and the multiplexed λ_{2k} values are fed to the MAP decoders to generate *a posteriori* LLRs $L_k(U_k)$. This completes one full-iteration of parallel turbo decoding. Similarly, further iterations can be carried out by generating the extrinsic information and repeating the above procedure.

V. CONCLUSION

In this paper highlights the concept of modified sliding window approach and state metric normalization technique which resulted in a highly pipelined architecture of parallel turbo decoder. These techniques have specifically shortened the critical path delay and improved the operating clock frequency that has eventually aided the parallel turbo decoder to achieve higher throughput. Power issue of this design was mitigated using fine grain clock gating technique during the implementation phase.

Similarly, large design-area of the decoder can be taken care by scaling down the technology. An implementation of 8 parallel turbo decoder with radix-2 MAP decoders has achieved a maximum throughput which is suitable for 3GPP-LTE-Advanced as per its specification.

VI. RESULT ANALYSIS

Fig.8 Output waveform for Encoder
The Fig. 8 shows the output waveform for Encoder. The input will be split up as Systematic bit and Parity bits (P1, P2) by using Convolutional Coder, to produce the encoder output.

Fig. 9 Output waveform for Decoder

The Fig. 9 shows the output waveform for Decoder. Based upon the techniques like Modulo normalization, Subtractive normalization and Trellis graph the 8 bit input will be proceed in BMCU and SMCU blocks to provide the decoded output.

REFERENCES

Sangeetha V did her Bachelor of Engineering in Electronics and Communication Engineering at Sri Subramanya College of Engineering and Technology, Palani and doing Masters of Engineering in VLSI Design at Sri Shakthi Institute of Engineering and Technology, Coimbatore, India. Her research interests are Wireless Networks and VLSI Design.

Lalithambigai M. Assistant Professor working in the Department of Electronics and Communication Engineering at Sri Shakthi Institute of Engineering and Technology, Coimbatore, India. She received her Master of Engineering (ME) degree in 2014 from Sona College of Technology, Salem, India. Her research interests are in VLSI Design and Communication.