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DESIGN VERIFICATION OF POWER MANAGEMENT UNIT 

AND CLOCK GENERATION BLOCK OF Wi-Fi SoC 

Abstract 

It is all about the importance of 

the system on chip and the typical 

intellectual property design verification 

flow that is followed in the industry, 

motivation behind this project and the 

time plan that was followed in the 

execution of project. 

The term “system on a chip”, or 

SOC really implies two things, the 

product itself and the methodology used 

to design it. A SOC product integrates 

several sub-systems, many or all of 

which would’ve been separate discrete 

chips in the past into a single chip. 

Depending on how tightly you restrict 

the definition, a SOC may be only a 

single silicon die, or possibly many dies 

inside a single package. Either way, a 

SOC is rarely the entire system on that 

single chip, but it usually encompasses 

the computing functions of the device.  

Index Terms : System on 

chip(SOC),Silicon die. 

Introduction 

System On a Chip (SOC) is an 

implementation technology and may have 

many transformations and many different 

variants during this execution flow. A 

typical SOC may contains the cores like a 

processor or processor sub-system, a 

processor bus, a peripheral bus, a bridge 

between the two buses, and many 

peripheral devices such as data 

transformation engines, data ports (e.g. 

UARTs, MACs) and controllers (e.g., 

DMA). The sub-systems included in a 

specific SOC depend on the intended 

device and a series of tradeoffs and 

requirements, such as cost, form factor, 

power, performance, and functionality.  

The verification methodology of an 

SOC flow includes the stimulation of 

design by providing input stimuli through 

Testbench setup and verify that it 

functioning as per intended specifications 

and this input stimulus exercises through a 

comprehensive set of test cases which 

includes all scenarios those verifies the 

designed module for both functionality and 

timing behavior.  

The primary focus in SOC 

verification is on checking the integration 

between the various components. The 

underlying assumption is that each 

component was already checked by itself. 

The combined complexity of the multiple 

sub-systems can be huge, and there are 
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many seemingly independent activities 

that need to be closely correlated. As a 

result, we need a way to define 

complicated test scenarios as well as 

measure how well we exercise such 

scenarios and corner cases. 

The reuse of many hardware IP blocks in a 

mix-and-match style suggests reuse of the 

verification components as well. Many 

companies treat their verification IP as a 

valuable asset, sometimes valued even 

more than the hardware IP. Typically, 

there are independent groups working on 

the subsystems, thus both the challenges 

and the possible benefits of creating 

reusable verification components are 

magnified. 

 

1.1 TYPICAL SOC VERIFIACTION FLOW 

The SOC verification undergoes 

many stages of verification during the 

cycle of design. A typical flow of 

verification starting from the specifications 

to design sign off is shown in Figure 1.1.  

    

 

Figure 1.1 SoC Verification Flow 

As shown in the design flow hardware part 

and software part will be segregated and 

they are developed in parallel. Design 

engineers will develop RTL models from 

specifications and also write test bench for 

their blocks. Verification engineers setup 

the verification environment like tool 

integration, scripts, etc.  

Typical design verification flow consists 

of following steps as design goes from 

design entry to tapeout. 

1. Functional Verification  

2. Timing Verification 

3. Physical Verification 

1.1.1 Functional Verification 

In functional verification, 

engineers checks correctness of all features 

specified in design and this is carry out by 

RTL simulations of design. In RTL 

simulations, set comprehensive test cases 

are driven through Testbench setup and 

these test cases includes the sequences that 

are required to verify the scenarios. After 

this the functionally verified design with 

error free is fed to synthesizer and this will 

generate gate level netlist for specified 

design technology.   

1.1.2 Timing Verification 

RTL simulations are run without 

timing information and it is not capable of 

finding potential design issues due to 

timing violations. Timing verification is 

carryout on synthesized netlist and called 

gate level simulations with timing 

information files for different corner cases 

called SDF. The netlist is nothing but gate 
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level description of the design. False paths 

(FP) and multi-cycle-paths (MCP) are 

timing exceptions that present a 

particularly difficult problem when trying 

to achieve the timing closure for high-

performance designs. Typically these 

exceptions (as well as all timing 

constraints) are considered late in the 

design cycle and are specified in response 

to timing problems during verification. For 

optimum timing results, all timing 

exceptions must be guaranteed to be 

correct. So any potential timing violations 

those were not caught in STA can be 

caught in gate level simulations during 

netlist verification. 

1.1.3 Physical Verification 

Layout vs. Schematics (LVS), 

Design Rule Checking(DRC), Signal 

integrity, etc. is covered in physical 

verification. In DRC all physical 

measurements are verifies as per specified 

design technology (e.g. TSMC 180nm, 

UMC 65nm Technology, etc.). In LVS the 

developed layout is compared with 

required schematic and their connections 

with power supplies and interconnection 

between the cells. Finally designed RTL 

models are sent to fabrication and 

successive validation/testing will be 

carried out on raw chip to investigate the 

indeed functionality before sending them 

to customer. 

 

1.2 MOTIVATION 

As today SOC design technologies 

becomes more and more complex design 

with more cores present on a single chip 

operating at higher speeds, the design has 

to be verify thoroughly for its 

completeness and indeed functionality. So 

it requires robust verification environment 

i.e. Testbench which need to be organize 

to suit for most of the similar design i.e. 

developing more generic environment 

gives the industry to produce more 

products in less time.  

The objective of work included: 

1.In a system-on-chip (SOC) design flow, 

the designed behavioral model i.e. register 

transfer level (RTL) code undergoes 

several transformations before it goes to 

synthesis. During each transformation, the 

design logical behavior needs to be 

verified for it‟s indeed functionality. 

2.The typical complex SoC contains 

several components/blocks, that are having   

interconnection with each other and also 

those will be used for the host interface. So 

the functionality of these modules should 

be verified.  

3.Perform gate level simulations with 

SDFs to verify any timing violations, 

functional aspects of synthesized design. 

4.Run the regressions periodically to know 

percentage of verification coverage for 

design.  

Deliverables included:  

1. Development of comprehensive 

test scenarios for module level and chip 

level to achieve zero bugs in design.  
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2. The developed test cases must 

cover/verify all the features specified in 

design requirement.  

3. The test cases should ensure less 

debugging efforts with maximum 

reusability for future IPs. 

Key tools to be used: 

1. Software:  Linux, Cadence Ncsim 

simulator, Synopsys Novas debug 

Platform. 

2. Languages: Perl, TCL, Verilog and 

VHDL. 

 

1.4 ORGANIZATION OF REPORT 

This report is organized in to 5 

chapters. 

Chapter 1 gives a brief introduction 

about the importance of the system on chip 

and the typical intellectual property design 

verification flow that is followed in the 

industry, motivation behind this project 

and the time plan that was followed in the 

execution of project. 

Chapter 2 gives a brief description 

about Wi-Fi Technology and also gives 

brief introduction about 802.11 protocol 

standards and its classification. It also 

describes the typical architecture of a Wi-

Fi SOC at chip level and briefly explains 

about the components present in this chip. 

Chapter 3 describe about the 

Testbench environment that was set up for 

verification and flow of testcase 

generation. It gives brief introduction to 

functional aspects of block and also it 

introduces the gate level simulation 

methodology with SDF.  

Chapter 4 illustrates the basic 

functional behavior of PMU and Clock 

Generation Block through obtained 

waveforms. The timing violations that 

were caught during GLS are also 

explained though waveforms and the final 

regression status also presented in this 

chapter. 

Chapter 5 talks about the future 

scope of the project and also the 

conclusions drawn from the results. 

 

    BACKGROUND THEORY 

       This chapter gives a brief description 

about Wi-Fi Technology and also gives 

brief introduction about 802.11 protocol 

standards and its classification. It also 

describes the typical architecture of a Wi-

Fi SOC at chip level and briefly explains 

about the components present in this chip 

like MAC hardware, PHY core, JTAG, 

PMU, etc. 

      Wi-Fi, known as a popular wireless 

networking technology uses radio waves to 

provide high-speed Internet connections. 

The Wi-Fi provides wireless connectivity 

by allowing the users to communicate in 

the band of 2.4GHz and 5GHz.The 

wireless adapter will translate the data sent 

by the user, into a radio signal which is 

then sent, via an antenna, to a decoder 

popularly known as the router. After 

decode, the data will then be sent to the 
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Internet through a wired Ethernet 

connection. As the wireless network 

functions as a duplex system, the data 

received through the Internet will get 

passed on to the router, and then it gets 

coded into a radio signal which will be 

received by the wireless adapter. The 

wireless networks uses radio frequency 

(RF) technology, when this radio 

frequency current is supplied to an 

antenna, an EM field is created which will 

then propagate through space. 

2.1 SPECIFICATION REVIEW 

IEEE 802.11 is a set of media 

access control (MAC) and physical 

layer (PHY) specifications for 

implementing wireless local area 

network (WLAN) computer 

communication in the 2.4, 3.6, 5, 

and 60 GHz frequency bands. They are 

created and maintained by 

the IEEE LAN/MAN Standards 

Committee (IEEE 802).  

Table 2.1: 802.11 Protocol Network 

Standards  

The base version of the standard was 

released in 1997, and has had subsequent 

amendments. The standard and 

amendments provide the basis for wireless 

network products using the Wi-Fi brand. 

While each amendment is officially 

revoked when it is incorporated in the 

latest version of the standard, the corporate 

world tends to market to the revisions 

because they concisely denote capabilities 

of their products. As a result, in the market 

place, each revision tends to become its 

own standard. Table 2.1 gives different 

protocols defined after first 802.11 

protocol and their operating frequency, 

bandwidth, possible maximum data rate, 

MIMO support and range. 

 

2.2 TYPICAL ARCHITECTURE 

OF WLAN SoC 

 

The typical architecture of wireless 

local area network (WLAN) SoC with all 

integrated modules is shown in Figure 2.2. 

It includes protocol driver system which is 

having MAC, PHY and RF modules, host 

interface modules like PCIE or SDIO,  

802.11 

protocal 

year Frequen

cy(GHz) 

Bandwidt

h(MHZ) 

Max. Data 

Rate(Mbit/s) 

MIMO Indoor 

Range

(m)  

Outdoor 

Range(

m) 

802.11 1997 2.4 22 2 No 20 100 

A 1999 5/3.7 20 54 No 35 120 

B 1999 2.4 22 11 No 35 140 

G 2003 2.4 20 54 No 38 140 

N 2009 2.4/5 20,40 65,135 4 70 250 

Ac 2013 5 20,40,80,

160 

86,180,390,7

80 

8 35 250 

https://en.wikipedia.org/wiki/Media_access_control
https://en.wikipedia.org/wiki/Media_access_control
https://en.wikipedia.org/wiki/Media_access_control
https://en.wikipedia.org/wiki/Physical_layer
https://en.wikipedia.org/wiki/Physical_layer
https://en.wikipedia.org/wiki/Wireless_LAN
https://en.wikipedia.org/wiki/Wireless_LAN
https://en.wikipedia.org/wiki/Wireless_LAN
https://en.wikipedia.org/wiki/IEEE_802.11y-2008
https://en.wikipedia.org/wiki/IEEE_802.11ad
https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
https://en.wikipedia.org/wiki/Local_area_network
https://en.wikipedia.org/wiki/Metropolitan_area_network
https://en.wikipedia.org/wiki/IEEE_802
https://en.wikipedia.org/wiki/Wi-Fi
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power management unit, PLL unit which 

drives the clock signal to each module 

present in SoC.  

 

Figure 2.1: Typical Architecture of Wi-Fi 

Soc 

      

The architecture of Wi-Fi SOC can be 

broadly divided as follows. 

1. Protocol Driver 

This set of hardware basically 

implemented as per protocol defined like 

802.11n/ac.  

i. Medium access Controller 

hardware 

ii. PHY hardware including ADC, 

DAC  

iii. RF module 

2. System Core 

This set of hardware is responsible for 

system initialization, reset and debugging. 

It also contains PLL block which is 

primary source of clock though out the 

chip. 

i. PMU 

ii. JTAG 

iii. PLL 

3. Host interface  

This interface actually communicate with 

external world like Wi-Fi enabled laptop, 

Setup box or Wi-Fi routers. PCIE and 

SDIO are two major interfaces are used as 

host interfaces in industry. 

4. On chip processor and memories 

On chip processor is used to system boot 

up and instruction execution issued by 

MAC hardware. All these processors will 

have associated memories and also 

external memories present for 

software/firmware load purpose while 

system is waking up. 

Major functionalities of MAC hardware: 

1. Addressing of destination stations 

(both as individual stations and as groups 

of stations) 

2. Conveyance of source-station 

addressing information. 

3. Protection against errors, generally 

by means of generating and checking 

frame check sequences 

4. Control of access to the physical 

transmission medium. 

5. Discard malformed frames. 

        METHODOLOGY  

This chapter gives a brief 

description about the methodology that 

was followed in the project. It describe 

about the Testbench environment that was 

set up for verification and flow of testcase 

generation. It gives brief introduction to 

functional aspects of block and also it 
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introduces the gate level simulation 

methodology with SDF.  

3.1 TEST BENCH SETUP 

A test bench or testing workbench 

is a virtual environment used to verify the 

correctness or soundness of a design or 

model. Test bench refers to an 

environment in which the product under 

development is tested with the aid of 

software and hardware tools. 

3.1.1 TEST BENCH ARCHITECTURE 

The test bench architecture which 

is used for current SoC is shown in Figure 

3.1. It mainly contains input stimuli, test 

bench and device under test (DUT). A 

directed TCL script is the input stimuli for 

test bench which have default settings and 

set of scenarios to be verified. A typical 

SoC have host interfaces PCIE, SDIO, etc. 

and JTAG interface.  

 

Figure 3.1: Test Bench Architecture 

PCIE and SDIO can be access through the 

PCIE interface and SDIO interface 

respectively of DUT. JTAG can be access 

through the GPIO (general purpose 

input/output) pins. PCI master will drive 

applied input stimulus to target module 

like PCIE, SDIO or JTAG through PCI 

BUS. We need to specify in our test case 

on which interface test case needs to run. 

All testcases can be run though any 

interface by providing interface command 

and the script will take care of handling of 

choosing interfaces. 

 

 

3.1.2 TEST CASE GENERATION AND 

VERIFICATION 

The flow of generating test case and its 

verification is shown in Figure 3.2.  

 

Figure 3.2: Test Case Generation and 

Verification Flow 

 

As shown in figure, the design modules 

and respective test bench modules are 

compiled and elaborated using simulation 

tool. Using SoC specific scripting file 

generate directed test case which contains 

all the initial settings, interface (jtag, pcie, 

sdio, etc) to run the test case and input file 

having set of scenarios to be verified. Now 

this directed test case run on simulation 

tool. Check for any errors which might be 
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due to input directed test files or debug 

any design issues using debugging tools. If 

test is failing due to scrip errors update 

then and re run the test case and update. If 

test case failing due to design issues report 

bugs to respective designers and after 

design fix compile and elaborate again and 

run the test case. The above steps needs to 

be follow till test case pass and then 

update the status.      

3.2 FUNCTIONAL DESCRIPTION OF 

MODULES 

3.2.1 Power Management Unit  

 

In low power design a set of 

methods are used to reduce power 

consumption of SoC. Out of all methods 

Power management unit especially plays 

crucial role in low power consumption. So 

in almost all the SoC, power management 

is being integrated. Power management 

Unit (PMU) is the most important core 

which manages clock/reset and power 

resources for the entire chip. The 

functioning of PMU is given high priority 

as many cores function on the clocks 

driven by it from the Phase Locked Loop 

(PLL).  

PMU dynamically selects clocks to be 

operated, based on request from one or 

more cores and availability of resources. 

The PMU manages the power and clock 

resources for the entire chip, including 

Clock/Reset Management, Dynamic Clock 

control of Throughput clock, Low Power 

Clock and Ideal Mode Clock for all the 

modules of SoC. Driving clocks from PLL 

and their management.  Generation of 

power island-specific resets, extended 

Power On Reset (POR). Power 

Management like Controlling LPO clock 

frequency. Power Island on/off control that 

makes some resources off depending on 

the necessity .Strapping options to control 

power-up mode  

The Power Management Unit (PMU) 

controls the oscillators and clocks with the 

capability of enabling or disabling the 

clock to the different peripherals 

individually in addition to enabling or 

disabling and configuring the available 

oscillators. This allows for minimizing 

energy consumption by disabling the clock 

for unused peripherals or having them run 

at lower frequencies. 

Resource Management: 

Resource management contains the 

information about resource power 

up/down sequence to be follow for all the 

states. Each state has the dependency on 

other states which must be powered 

up/down before the present state powered 

up/down. It also contains the power 

up/down time for each resource in 

sequence. 

 

3.2.2 Clock Selection Module  

 

PMU clock select module will 

decides output clock to be selected, based 

on clock request from one or more cores as 

well as on resource availability status. Any 

core request Throughput clock its checks 

whether resource current state is 

throughput avail, if state is throughput 

avail then its selects throughput as system 
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clock. If one core requests throughput 

clock and another core request Low power 

clock, then its gives the priority to 

throughput clock if throughput clock is 

available or it selects Low power clock as 

system clock. Clock select block follows 

the below priority in selecting output 

clocks. 

Throughput clock > Low power clock > 

Ideal mode clock 

 

 

Figure 3.3: Clock Select Module 

.  

3.2.3 Clock Generation Block and PLL 

The clock generation block is 

shown in Figure 3.4. Clock divider block 

gives the wide range of frequency signals 

which goes to different cores present on 

SoC. In clock divider block VCO 

frequency is divided by frequency dividers 

for accomplishing all cores wide range of 

clock frequency requirements. Finally 

these frequencies are given to clock select 

logic block and output clocks can be select 

using clock_sel signal and request from 

individual cores which is output from 

PMU block. 

 

 

Figure 3.4: Clock Generation Block 

Phased- Locked Loop: 

Phase Locked Loop (PLL) is a 

fundamental part of radio, wireless and 

telecommunication 

Technology. The PLL circuit performs 

frequency multiplication, via a negative 

feedback mechanism, to generate the 

output frequency Fvco, in terms of the 

phase detector comparison frequency, Fr. 

The phase-locked loop allows stable high 

frequencies to be generated from a low-

frequency reference. Any system that 

requires stable high frequency tuning can 

benefit from the PLL technique. 

 

Registers (PMU and PLL): 

 

The default control values for PMU 

core and PLL block present in these 

registers. Resource management and clock 

requests done through the PMU registers. 

PLL registers have default divider integer 

and fractional values. Clocks request from 

MAC and PHY and clock gating can be 

done through PLL registers.  
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3.2.4 Clock Gating 

 

Clock gating is a popular technique 

used in many synchronous circuits for 

reducing dynamic power dissipation. 

Clock gating saves power by adding more 

logic to a circuit to prune the clock tree. 

Pruning the clock disables portions of the 

circuitry so that the flip-flops in them do 

not have to switch states. Switching states 

consumes power. When not being 

switched, the switching power 

consumption goes to zero, and 

only leakage currents are incurred.  

 

 

 

Figure 3.5: Latch Based Clock Gating 

 

Clock gating works by taking the enable 

conditions attached to registers, and uses 

them to gate the clocks. Therefore it is 

imperative that a design must contain these 

enable conditions in order to use and 

benefit from clock gating. This clock 

gating process can also save significant die 

area as well as power, since it removes 

large numbers of muxes and replaces them 

with clock gating logic. This clock gating 

logic is generally in the form of 

"Integrated clock gating" (ICG) cells. 

However, note that the clock gating logic 

will change the clock tree structure, since 

the clock gating logic will sit in the clock 

tree. 

Clock gating logic can be added into a 

design in a variety of ways: 

1. Coded into the RTL code as enable 

conditions that can be 

automatically translated into clock 

gating logic by synthesis tools (fine 

grain clock gating). 

2. Inserted into the design manually 

by the RTL designers (typically as 

module level clock gating) by 

instantiating library specific ICG 

(Integrated Clock Gating) cells to 

gate the clocks of specific modules 

or registers. 

3. Semi-automatically inserted into 

the RTL by automated clock gating 

tools. These tools either insert ICG 

cells into the RTL, or add enable 

conditions into the RTL code. 

These typically also offer 

sequential clock gating 

optimizations. 

Any RTL modifications to improve clock 

gating will result in functional changes to 

the design (since the registers will now 

hold different values) which need to be 

verified. Sequential clock gating is the 

process of extracting/propagating the 

enable conditions to the 

upstream/downstream sequential elements, 

so that additional registers can be clock 

gated. 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Power_dissipation
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3.3 METHODOLOGY OF GATE 

LEVEL SIMULATIONS EXECUTION 

3.3.1 Introduction to Timing Analysis 

 

Timing and delay information and 

analysis are very important and parallel 

flow in the ASIC design process because it 

brings higher level degree of realism to be 

implemented into the circuit model. 

Typically this timing information does not 

include in Hardware description model and 

the outputs of these modules are 

instantaneously got resolved. This strips 

the designer of important details such as 

propagation delay, pulse width, setup and 

hold times. The setup and hold violations 

could very easily lead to incorrect state 

transitions from the design which is not 

intended as per the functional 

requirements. 

Timing characterization of entire design is 

tedious and time consuming endeavor and 

it is often ignored process in a design. So 

this allows most designers to be primarily 

concerned with the functional correctness 

of a circuit. In the past, this approach may 

have been adequate for lower speed 

designs. However, as technology continues 

to mature, meeting timing constraints for 

designs becomes just as important as 

functional correctness. 

 

Design Flow with No Timing: 

 

A typical Design entry which is 

implemented in HDL to layout design flow 

for ASICs is shown in figure. Essentially 

this HDL model is the design which is to 

be implemented. RTL simulations will run 

on this model for verifying functional 

aspects of intended behavior. The 

synthesis tool generates gate level netlist 

for a given HDL modeled design using 

standard digital cell library respective to 

manufacturing technology. After this, gate 

level netlist go under several design flows 

including floor planning and an automatic 

place and route tool to generate the layout 

for the design.  

 

 

Figure 3.6: Design Flow with No Timing 

 

At this point the design is well on its way 

to being finished. The design could be 

simulated and it could also be functionally 

verified to be correct. However, up to this 

point, no timing information has been 

included. There is no knowledge about 

whether or not setup and hold times can be 

met. There is no knowledge that 

propagation delays are appropriate. The 

design may be functionally correct, but 

after getting the chip back from 

fabrication, it still might fail. The reason 

would be that no timing information was 

included in the verification process and 

critical paths were not properly identified. 

 

Design Flow with Timing 

 

Additional timing characterization 

has to be done on the design in order to 

prove that it will not fail. The design flow 
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should be changed to include delay 

extraction and back annotation.  

 

Figure 3.7: Design Flow with Timing 

using Back Annotation 

Delay extraction will allow us to get 

delays from the placed and routed design. 

Back annotation will then take this delay 

information and place it back into the gate 

level Verilog model. Gate level 

simulations will carry out on this netlist for 

verifying design after place and route to 

ensure indeed functionality. At this point, 

the design can be simulated with timing 

information to ensure both functional and 

timing correctness.  

 

3.3.2 Motivation for running gate level 

simulations 

 

RTL simulation is the basic 

requirement to signoff design cycle, but as 

operating frequencies of SOC 

tremendously increased whole design need 

to properly verify functionally as well as 

for timing requirements. This is 

accomplishing by carry out static timing 

analysis and Dynamic timing analysis. 

Static timing analysis does not depend on 

any data or logic inputs, applied at the 

input pins. The input to an STA tool is the 

routed netlist, clock definitions (or clock 

frequency) and external environment 

definitions. The STA will validate whether 

the design could operate at the rated clock 

frequency, without any timing violations. 

Limitations of STA lead to increasing 

trend in the industry to run gate level 

simulations (GLS) before going into the 

last stage of chip manufacturing. 

Improvements in static verification tools 

like Static timing analysis (STA) and 

Equivalence Checking (EC) have 

leveraged GLS to some extent but so far 

none of the tools have been able to 

completely remove it. GLS still remains a 

significant step of the verification cycle 

footprint.  

 

The main reasons for running GLS are 

as follows: 

1. To verify the power up and reset 

operation of the design and also to 

check that the design does not have 

any unintentional dependencies on 

initial conditions. 

2. To give confidence in verification of 

low power structures, absent in RTL 

and added during synthesis.  

3. It is a probable method to catch multi 

cycle paths if tests exercising them 

are available. 

4. Power estimation is done on netlist 

for the power numbers.  

5. To verify DFT structures absent in 

RTL and added during or after 

synthesis. Scan chains are generally 

inserted after the gate level netlist has 

been created. Hence, gate level 
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simulations are often used to 

determine whether scan chains are 

correct. GLS is also required to 

simulate ATPG patterns.  

6. Tester patterns (patterns to screen 

parts for functional or structural 

defects on tester) simulations are done 

on gate level netlist. 

7. To help reveal glitches on edge 

sensitive signals due to combination 

logic. Using both worst and best-case 

timing may be necessary. 

8. It is a probable method to check the 

critical timing paths of asynchronous 

designs that are skipped by STA. 

9. To avoid simulation artifacts that can 

mask bugs at RTL level (because of 

no delays at RTL level). 

10. Could give insight to constructs that 

can cause simulation-synthesis 

mismatch and can cause issues at the 

netlist level. 

11. To check special logic circuits and 

design topology that may include 

feedback and/or initial state 

considerations, or circuit tricks. If a 

designer is concerned about some 

logic then this is good candidate for 

gate simulation. Typically, it is a good 

idea to check reset circuits in gate 

simulation. Also, to check if we have 

any uninitialized logic in the design 

which is not intended and can cause 

issues on silicon. 

12. To check if design works at the 

desired frequency with actual delays 

in place. 

13. It is a probable method to find out the 

need for synchronizers if absent in 

design. It will cause “x” propagation 

on timing violation on that flop. 

  

 

Figure 3.8: GLS Execution flow 

Execution Strategy for GLS 

1. Planning the test-suite wisely to be 

run in GLS 

 

In highly integrated products it is not 

possible to run gate simulation for all the 

SoC tests due to the simulation and debug 

time required .Therefore, the list of vectors 

which are to be run in GLS has be selected 

judiciously. The possible candidates for 

this list are 

i. Testcases involving 

initialization, boot up. 

ii. All the blocks of the design 

must have atleast one testcase for 

GLS. 

iii. Testcases checking clock 

source switching. 
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iv. Cases checking clock 

frequency scaling. 

v. Asynchronous paths in the 

design. 

vi. Testcases which check 

entry/exit from different modes 

of the design. 

vii. Dedicated tests for timing 

exceptions in the STA. 

viii. Patterns covering multi 

clock domain paths in the design 

ix. Multi reset patterns are a 

good candidate for GLS 

 

It must also be made sure that the test 

cases selected to be run in GLS are 

targeting the   maximum desired operating 

frequency of the design. Should there be 

no time constraints, all tests run in RTL 

simulations can be rerun in GLS. Also, if 

there are no tests fulfilling the criteria 

mentioned above, then they should be 

coded. 

 

2. Test bench updates for GLS 

 

A list of all the synchronizer flops is 

generated using CDC tools. Also, other 

known asynchronous paths where timing 

checks needs to be turned off are analyzed 

and complete list of such flops is prepared 

which also includes reset synchronizers. 

The timing checks are turned off on all 

such flops to avoid any redundant 

debugging, otherwise they will cause “x” 

corruption in GLS. This work should be 

ideally done before the SDF arrives .It 

may happen that the name of the 

synchronizers in RTL and the netlist are 

different. All such flops should be updated 

as per netlist .Also, the correct standard 

cell libraries, correct models of analog 

blocks, etc. need to be picked for GLS.  

 

3. Initialization of non-resettable 

flops in the design 

 

One of the main challenges in GLS is the 

“x” propagation debug. X corruption may 

be caused by a number of reasons such as 

timing violations, uninitialized memory 

and non resettable flipflops. There are 

uninitialized flops in design which by 

architecture are guaranteed to not cause 

any problems (if they settle to any value at 

start). Thus, there is a need to find out all 

such flops in the design (which are 

reviewed with designers) and initialize 

them to some random value (either 0 or 1) 

so as to mimic silicon. 

 

4. Unit delay GLS for Testbench 

cleanup 

 

This step is not compulsory but is 

generally very fruitful if employed in the 

GLS execution. The setup is done for unit 

delay GLS (no SDF) and the testcases that 

are planned to be run on gate level are run 

with this setup to clean the testbench. This 

is done because the unit delay simulations 

are relatively faster (than those with SDF) 

and all the testbench/testcase related issues 

can be resolved here (for example -  

change probed logic hierarchy from rtl to 

gate, wrong flow of testcase, use of 

uninitialized variables in the test cases that 

can cause corruption when read via core, 

etc). Running the unit delay GLS is 

recommended because one can catch most 
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of the testbench/testcase issues before the 

arrival of SDF. After the SDF arrives, 

focus should be more on finding the real 

design/timing issues, so we need to make 

sure that the time does not get wasted in 

debugging the testcase related issues at 

that time. 

 

5.Annotation warnings cleanup on SDF 

 

When the SDF is delivered to verification 

team, then the simulations are run with the 

SDF/netlist. Specific tool switches need to 

be passed which picks us the SDF and tries 

to annotate the delays mentioned in the 

SDF to the corresponding instances/arcs in 

the netlist. This is known as back-

annotation.  

 

During this process, many annotation 

warnings are encountered which need to 

be analyzed and either sorted out or 

waived off by the design team. Most 

important warnings which need to be 

looked into are the ones which are due to 

non-existent paths i.e. the SDF has an arc 

but netlist does not have it. Also, there can 

be mismatch between the simulation 

model “specify” block and .lib of the IP. 

 

5. Running GLS with SDF: 

 

Early SDF (for initial debug) this step 

involves use of a SDF in which timing is 

met at a lower frequency than target and 

GLS can be run at that frequency. This 

helps in cleaning up the flow and finding 

certain issues before the final SDF arrives. 

      

This step starts with the SDF in which 

timing is met at target frequency. The 

entire setup is done and the planned 

pattern-suite is run on this setup and 

failures needs to be debugged according to 

a priority list which should be made before 

hand. All the high priority patterns need to 

be debugged first. 

 

Challenges faced during GLS setup 

GLS with SDF delays annotated is 

usually very slow and time consuming. A 

lot of planning is needed to wisely select 

the patterns that need to be simulated on 

netlist. Run-time for these tests and 

memory requirements for dump and logs 

must also be considered. Identifying the 

optimal list of tests to efficiently utilize 

GLS in discovering functional or timing 

bugs is tough. These are to be decided with 

discussions with timing team and design 

team on which paths are timing 

critical/asynchronous and needs to be 

checked. 

GLS is much more difficult than RTL 

simulations as delays of gates, 

interconnects comes into picture and RTL 

assumptions for arrival of data/clock may 

mismatch causing failures. During the 

initial stages of GLS, identifying the list of 

flops/latches that needs to be initialized 

(forced reset) is a big hurdle. The 

pessimism in simulations would cause “x” 

on the output of all such components 

without proper reset, bringing GLS to a 

standstill. If approved by design and 

architecture team, these initializations 

should be done to move forward. 
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During synthesis, the port/nets may get 

optimized or re-named to meet the timing 

on these paths. Monitors/Assertions 

hooked in Testbench during RTL 

simulations need to be revised for GLS to 

make sure the intended net is getting 

probed. Also, in netlist there can be 

inverters that can be inserted on that signal 

driver due to boundary optimization and 

can cause false failures (not having any 

design issues). This is really tough to 

figure out and debug. 

If the gate level simulation with SDF is 

done without a complete synchronizer list, 

then failure debug to find such cases on 

gate level is quite cumbersome. Multiple 

debug iterations may happen in GLS to 

find out many such flops. 

Debugging the netlist simulations is a big 

challenge. In GLS, models of the cells 

make the output “x” if there is a timing 

violation on that cell. Identifying the right 

source of the problem requires probing the 

waveforms at length which means huge 

dump files or rerunning simulations 

multiple times to get the right timing 

window for violations. The latest tools are 

offering “x” tracing techniques for quickly 

tracing the source of “x” propagation. 

Such tool features need to be explored. All 

said and done, it can be concluded that one 

requires a lot of patience while debugging 

the GLS waveforms. 

 

In short, despite being a time consuming 

activity and having many challenges in 

setup and debug, GLS is a great 

confidence booster in the quality of the 

design. It can uncover certain hidden 

issues which get missed out or difficult to 

find by RTL simulations. This is the 

reason many organizations prefer this 

activity before tape-out because it is more 

close to the actual silicon and gives a fairly 

good idea about how the design will 

behave in real. The probability of having 

sound sleep after tape out improves with 

GLS. 

 

3.3.3 Standard Delay Format and 

Generation of SDF Files 

This section is an overview of the 

Standard Delay Format (SDF). The best 

description of what the SDF is can be 

found in the opening paragraph of the 

IEEE Draft Standard. 

 

“The Standard Delay Format (SDF) was 

designed to serve as a simple textual 

medium for communicating timing 

information and constraints between 

electronic design automation tools. The 

original version was designed by Rajit C. 

Chandra in 1990 while at Cadence Design 

Systems, and was intended as a means of 

communicating macrocell and 

interconnects delays from Gate Ensemble 

to Verilog-XL, Veritime and other stand-

alone tools requiring timing data“ 

 

The SDF was designed from the ground up 

to be an easy way to convey timing 

information to a simulator. The SDF file 

can furthermore be utilized by other design 

tools. It can be leveraged to convey design 

constraints identified during timing 

analysis to layout tools (forward 

annotation) and it can also be used for post 
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layout timing analysis and simulation 

(back annotation). 

The figure on the following page depicts 

the general flow of how to use SDF files in 

an ASIC design. The SDF files are most 

often generated by a delay calculator. This 

delay calculator uses information from a 

placed and routed design. After the SDF 

file is generated by the timing calculator, 

simulator will be used to back annotate 

this delay information into the design 

description. Timing characteristics of 

ASICS are strongly influenced by 

interconnect affects. This is why back 

annotation is most often done post layout. 

The SDF imposes no restrictions on the 

precision of the timing data being 

represented. This implies that the accuracy 

of the timing data is dependent on the 

accuracy of the timing calculator.  

 

 

Figure 3.9: SDF Generation and Back 

Annotation 

 

 

 

Timing Checks 

 

The SDF has many different timing 

checks available. The important ones are 

the setup, hold, recovery and width timing 

checks. They will be discussed below. The 

format for the timing checks is a timing 

check definition followed by the 

appropriate delay information. This delay 

information varies for each timing check. 

 

Setup Time: This is the setup timing 

check. It is defined as the time before a 

clock that the signal must remain stable in 

order for that signal to successfully be 

stored into the device. The format is the 

keyword SETUP followed by an input port 

specification followed by an output port 

specification followed by the delay values. 

 

Figure 3.10: Setup Time 

Example:        (INSTANCE x.a) 

                        (TIMINGCHECK 

                        (SETUP din (posedge clk) 

(12)) 

    - - - - 

    - - - - 

                        ) 

 

Hold Time: This is the hold timing check. 

It is defined as the time after a clock edge 

in which a signal must remain stable. The 

format is the keyword HOL followed by 

an input port specification followed by an 

output port specification followed by the 

delay values. 
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Figure 3.11:  Hold Time 

Example:         (INSTANCE x.a) 

                        (TIMINGCHECK 

                        (  HOLD din (posedge clk) 

(10)) 

- - - - 

- - - - 

                        ) 

 

Setup and Hold Combined: This is a 

combination of setup and hold. Its format 

is the keyword SETUPHOLD followed by 

input port followed by output port 

followed by setup delay values followed 

by hold delay values. 

 

Figure 3.12: Setup and Hold Time 

Example:         (INSTANCE x.a) 

                        (TIMINGCHECK 

                        (SETUPHOLD din 

(posedge clk) (12) (9.5) (CCOND ~reset)) 

- - - - 

- - - - 

                        ) 

 

Recovery Time: The recovery time is 

defined as the limit of the time between 

the release of an asynchronous control 

signal from the active state and the next 

active clock edge. The format is the 

keyword RECOVERY followed by an 

input port followed by an output port 

followed by the delay values. 

 

Figure 3.13: Recovery Time 

Example:         (INSTANCE x.b) 

                        (TIMINGCHECK 

                        (  RECOVERY (posedge 

clearbar)  (posedge clk) (10.5)) 

- - - - 

- - - - 

                        ) 

 

Removal Time: The removal shall specify 

limit values for removal timing checks. A 

removal timing check is a limit of the time 

between an active clock edge and the 

release of an asynchronous control signal 

from the active state, for example between 

the clock and the clearbar for a flip-flop. If 

the release of the clearbar occurs too soon 

after the active edge of the clock, the state 

of the flip-flop shall become uncertain it 

could be the value set by the clearbar, or it 

could be the value clocked into the flip-

flop from the data input. In other respects, 

a removal check is similar to a hold check. 

The syntax for removal timing check is 

described in Syntax 
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Figure 3.14: Removal Time 

 

Example:         (INSTANCE x.b) 

                        (TIMINGCHECK 

                        ( REMOVAL (posedge 

clearbar)  (posedge clk) (10.5)) 

                        - - - - 

- - - - 

                        ) 

 

Width: The width timing check specifies a 

limit for a minimum pulse width. If the 

signal has unequal phases, two pulse 

widths can be specified. 

 

Figure 3.15: Width Timing Check 

 

Example:         (INSTANCE x.b) 

(TIMINGCHECK 

(WIDTH (posedge clk) 

(30)) 

(WIDTH (negedge clk) 

(16.5)) 

- - - - 

- - - -  

) 

 

Verilog Back Annotation: 

 

Back annotation is the process by which 

timing information is added into a design 

so that the design can be simulated with 

realistic delays. For this section back 

annotation requires that a SDF file has 

been generated for a design and that 

specify blocks with path delays have been 

defined for cells.  

 

3.3.4 Importance of Corner case 

Simulations 

 

The propagation delay varies 

significantly due to variations in transistor 

operating parameters over the 

environmental changes which include 

operating supply voltages and temperature 

variations and process changes. Process 

variations are due to variations in the 

manufacture conditions such as 

temperature, pressure and dopant 

concentrations. 

 A higher voltage makes a cell 

faster and hence the propagation delay is 

reduced 

 A higher temperature will decrease 

the threshold voltage 

 Variations in the process parameter 

leads to transistors have different transistor 

lengths throughout the chip. This makes 

the propagation delay to be different. 

 

These variations can be modelled under 

different corner case like fast (minimum 

delay) and slow (maximum delay) and 

these are shown in Table.  

 

 

 



ISSN: 2278 – 909X 
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)  

Volume 5, Issue 2, February 2016 

 

304 

All Rights Reserved © 2016 IJARECE 

Table 3.1: Corner cases 

 

So apart from typical SDF generation we 

need generate SDF for maximum and 

minimum corners too using worst case 

conditions and finally using these SDF, 

carry out gate level simulations for 

verifying the design under corner 

conditions this eventually boost the 

confident on designed modules. Run slow 

corner simulations for delay analysis and 

fast corner simulations for power and race 

conditions like hold time analysis. 

 

3.4 TOOLS USED IN PROJECT 

3.4.1 Cadence Ncsim Simulator 

Ncsim from Cadence is used as a 

solution for all simulation and verification 

environments. It provides engines for 

Coverage, constraint solver, Assertions to 

name a few. Ncsim provides many options 

to collect and analyze the simulation data 

effectively and debug them using 

waveform dumping. This tool is used for 

compilation and elaboration of both 

Verilog and VHDL model and commands 

can be given from console or GUI 

provided by vendor. 

3.4.2 NOVAS DEBUG PLATFORM 

(VERDI) 

Novas Debussy debug system, 

Verdi automated debug system is used for 

the debugging and has the best interactive 

feature for debugging when we want to 

back trace a signal, it will be able to show 

all the drivers respective to that load, and 

also it has the facility for grouping of 

signals and this also comes into handy 

when analyzing the signals. The Verdi 

Automated Debug System is an advanced 

open platform for debugging digital designs 

with powerful technology that helps you 

comprehend complex and unfamiliar design 

behavior, automate difficult and tedious 

debug processes and unify diverse and 

complicated design environments. 

nTrace: A source code viewer and analyzer 

that operates on the KDB to display the 

design hierarchy and source code for 

selected design blocks. It allows the tracing 

of signals across the design.  

nWave: A state-of-the-art graphical 

waveform viewer and analyzer that is fully 

integrated with Verdi. It allows viewing the 

signals value and waveform. Figure 3.4.1 

shows GUI interface for nTrace and nWave. 

 Environmental 

Parameter 

Process 

Parameter 

Corner Voltage Temperature Vth 

Voltage 

Fast Vnom -40
0
C Vthnom - 

∆Vth 

Slow Vnom 125
0
C Vthnom - 

∆Vth 

Typical Vnom 27
0
C Vthnom - 

∆Vth 
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Figure 3.16: Verdi window for nTrace and 

nWave. 

nSchema: As shown in figure 4.4.2 a 

schematic viewer and analyzer that 

generates interactive debug-specific logic 

diagrams showing the structure of selected 

portions of a design. Flexible schematics and 

block diagrams give you the ability to 

display logic and connectivity using familiar 

symbols. 

 

Figure 3.17: nSchema Window 

 

 

 

ANALYSIS 

This chapter shows the results 

which illustrate basic functional behavior 

of PMU and Clock Generation Block 

through obtained waveforms. The timing 

violations that were caught during GLS are 

also explained though waveforms and the 

regression status while verifying these 

blocks at the end of the project. 

 

4.1 OUTPUT WAVEFORM 

ANALYSIS 

 

Figure 4.1 describes the basic 

Clock request from different cores and 

final PMU output for requests based on 

availability of recourses that are required 

for current state requirement. In the 

present SOC. there are total six cores 

present and each core has separate clock 

request depending on system requirement. 

Here before request for any clock, we must 

ensure the all the resources should be in 

„ON‟ state and clock_avail signal should 

go active.  
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 Figure 4.1: Output waveform shows 

Clock request from different cores and 

PMU output for requests.  

Figure 4.2 describes how exactly PMU 

determines the priority over the request 

and availability of resources. Here it 

explains PMU final clock select for a 

single core with multiple clock requests. 

Initially all clocks (H_clk, LP_clk and 

IM_clk) are available and there is request 

for H_clk so T_clk is selected as final 

clock to be run. After some time T_clk 

turned off, now PMU look for next 

available clock and LP_clk is available so 

PMU select LP_clk as final clock even 

though there is a request for T_clk. 

Similarly same priority is followed for 

LP_clk over IM_clk.    

 

 Figure 4.2: Output waveform shows PMU 

priority over request and availability of 

resource 

Figure 4.3 explains programming of PLL 

dividers and respective output frequency 

on PLL VCO output. Here PLL is 

provided with set registers which can be 

program as per require of  

 

Figure 4.3: Output waveform shows 

programming of PLL dividers and 

respective frequency  

 

clock frequency. There are two parts in 

divider registers first part is integer divider 

and fractional part for fine tune of signal 

frequency. In this the reset sequence of 

PLL has been shown and PLL is in close 

loop and it must not lost its lock during 

small step change of frequencies which 

can be observed in this waveform. 

 

Figure 4.4 describes clock gating 

implematation which is a low power 

technique.Here clock gating block 

generates output signal based on clock 

enable during which gives output as input 

and rest of the skips the pulses. The 

number of pulses need to be skip and 

number of pulses need to pass can be 

program through registers and using these 

values internal timers will toggle clock 

enable signal. In following example total 

seven pulses have been skipped and only 

three pulses are present on output signal 

and this repeats for every ten pulses.   
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Figure 4.4: Output waveform shows Clock 

Gating Implementation.  

 

Figure 4.5 shows “X‟ propagation due to 

non resettable flipflop. Here a 4-bit 

register outputs are initially „X‟ and when 

there is a first rising edge of clock with 

rst_n, clr are being at „0‟, all fip flop 

should get reset. But second flipflop is not 

resettable and this cause „X‟ propagation. 

After releasing reset also second flipflop is 

sampling the input as „X‟ at the output.     

 

 

 

Figure 4.5: Output waveform shows “X‟ 

propagation due to non resettable flipflop. 

Figure 4.6 shows one possible way of 

handling „X‟ propagation problem. Here at 

the starting of simulation the output of 

second flipflop is deposited to logic „0‟ 

and this make sure that output is at logic 

„0‟ till next assignment for this output as 

per logic. So this eliminates „X‟ 

propagation due to non resettable flipflop. 

 

 

 

Figure 4.6: Output waveform shows 

deposing „0‟ on non resettable flipflop 

output 

 

Figure 4.7 shows another possible way of 

handling „X‟ propagation problem. Here at 

the starting of simulation the output of 

second flipflop is deposited to logic „1‟ 

and this make sure that output is at logic 

„1‟ till next assignment for this output as 

per logic. So this eliminates „X‟ 

propagation due to non resettable flipflop. 
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Figure 4.7: Output waveform shows 

deposing „1‟ on non resettable flipflop 

output. 

 

Figure 4.8 shows setup time violation. 

Here enabled signal and resetb of flipflop 

are at logic „1‟ so input value is sampled at 

output at rising edge of clock. But as 

shown in figure the minimum amout of 

time during which data at input is not 

stable before clock edge which leads to 

metastebility state of flipflop and this 

makes flipflop output as „X‟ 

 

 

Figure 4.8: Output waveform shows setup 

time violation 

 

4.2 REGRESSION STATUS RESULTS 

To know the amout verification 

completed we run the regressions 

periodocally or/and after any design 

changes in RTL. Here these regressions 

have been run for both RTL simulations 

and gate level simulations though out the 

projects. The following tables give 

regression status for RTL and GLS 

simulations of Chip1 and Chip2. 

Table 4.1: Regression status for RTL 

simulations of Chip1 

 

Modul

e 

Total no 

of 

Testcase

s 

No. of 

testcase

s 

passed 

at 

starting 

of 

project 

No. of 

testcase

s 

passed 

at end 

of 

project 

PMU 36 9 36 

CGB 29 12 29 

 

Table 4.2: Regression status for Gate 

Level Simulations of Chip1 

 

Modul

e 

Total no 

of 

Testcase

s 

No. of 

testcase

s 

passed 

at 

starting 

of 

project 

No. of 

testcase

s 

passed 

at end 

of 

project 

PMU 13 5 13 

CGB 15 4 15 
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Table 4.3: Regression status for RTL 

simulations of Chip2 

 

modul

e 

Total no 

of 

Testcase

s 

No. of 

testcase

s passed 

at 

starting 

of 

project 

No. of 

testcase

s passed 

at end 

of 

project 

PMU 43 8 43 

CGB 37 15 37 

Table 4.4: Regression status for Gate 

Level Simulations of Chip2 

 

Modul

e 

Total no 

of 

Testcase

s 

No. of 

testcase

s 

passed 

at 

starting 

of 

project 

No. of 

testcase

s 

passed 

at end 

of 

project 

PMU 15 4 15 

CGB 19 7 19 

 

        CONCLUSION AND 

FUTURE SCOPE OF WORK 

This chapter gives a quick 

overview about the summary of the work 

done during the project and also the 

conclusions of the project work and the 

challenges that were faced in the execution 

of the project alongside the future scope of 

it. 

 

5.1 WORK SUMMARY 

The main objective of the project 

design verification of PMU and clock 

generation block through RTL and gate 

level sumulations. As design progress RTL 

would go several trnasformations and at 

each such case designed model must 

ensure error free. In order to achieve 

complete and robust design, first models of 

PMU and clock generation block are 

fuctionally verified through RTL 

simulation with comprehensive testcases. 

Fuctional verifiaction does not satisfy 

complete verification so for timing 

verifiaction which vital gate level 

simulations have been run with sub set of 

tetscases those involves reset sequence and 

at clock domine crossing. Regressions 

have been run periodically to know the 

status og design verification.  

5.2 CONCLUSIONS 

The work concludes that the design 

verification of Power management unit 

and clock generation block has completed 

successfully for two target chips. There 

were many design change with respect to 

first chip in both specification wise and 

manufacturing technology wise. The 

finctionality of these blocks thorouly 

verified with help of RTL and gat level 

simulations and 100% regression status 

has achieved before the tapeout of two 

chips. During cycle of verification several 

bugs were found and out of them some are 

very critical and they were reported to 

respective design owners. Similarly during 

gate level simulations many timing 

violation have caught and reported to 
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backend team and this cycle repeated till 

end of project.    

 

5.3 FUTURE SCOPE OF WORK 

The developed scripts for verifying 

scenorios were made as generic which 

permits future chips can adopt these 

testcases with less efforts which intern 

reduce design cycle. All register read or 

writes have made generic to all other chips 

which are design phase or architecture 

phase in which by giving base address 

only we run all testcases as register set 

index is fixed for all core registers and this 

can be easily undertand by designers and 

help them to reduce dubugging efforts. 

The developed test bench setup and 

set comprehensive testcases can easily 

migrate to system verilog platform which 

is popular language for verification in 

industry which provides more feasible 

constructs. The existing sequences in TCL 

language can directy port to System 

verilog platform and there is a scope of 

increase in automation in new platform.  

The next step after the verification 

is followed by the backend flow, and any 

issues that they come across during this 

process will be brought to the notice of 

front end designers if they are related to 

functional issues and once they are fixed 

the models are delivered to the SOC team 

and it goes through one more verification 

flow and after successful fabrication 

comes as an product in next generation 

Wi-Fi SOC. 
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