
ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

285

All Rights Reserved © 2016 IJARECE

DESIGN VERIFICATION OF POWER MANAGEMENT UNIT

AND CLOCK GENERATION BLOCK OF Wi-Fi SoC

Abstract

It is all about the importance of

the system on chip and the typical

intellectual property design verification

flow that is followed in the industry,

motivation behind this project and the

time plan that was followed in the

execution of project.

The term “system on a chip”, or

SOC really implies two things, the

product itself and the methodology used

to design it. A SOC product integrates

several sub-systems, many or all of

which would’ve been separate discrete

chips in the past into a single chip.

Depending on how tightly you restrict

the definition, a SOC may be only a

single silicon die, or possibly many dies

inside a single package. Either way, a

SOC is rarely the entire system on that

single chip, but it usually encompasses

the computing functions of the device.

Index Terms : System on

chip(SOC),Silicon die.

Introduction

System On a Chip (SOC) is an

implementation technology and may have

many transformations and many different

variants during this execution flow. A

typical SOC may contains the cores like a

processor or processor sub-system, a

processor bus, a peripheral bus, a bridge

between the two buses, and many

peripheral devices such as data

transformation engines, data ports (e.g.

UARTs, MACs) and controllers (e.g.,

DMA). The sub-systems included in a

specific SOC depend on the intended

device and a series of tradeoffs and

requirements, such as cost, form factor,

power, performance, and functionality.

The verification methodology of an

SOC flow includes the stimulation of

design by providing input stimuli through

Testbench setup and verify that it

functioning as per intended specifications

and this input stimulus exercises through a

comprehensive set of test cases which

includes all scenarios those verifies the

designed module for both functionality and

timing behavior.

The primary focus in SOC

verification is on checking the integration

between the various components. The

underlying assumption is that each

component was already checked by itself.

The combined complexity of the multiple

sub-systems can be huge, and there are

Chandrahas Reddy.M
1
and Sugandhi.k

2

1
 M.Tech .Vlsi Design, SRM University, Chennai, India

2
Asst.Professor (Sr.G), Department of Electronics and Communication SRM University,

Chennai, India.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

286

All Rights Reserved © 2016 IJARECE

many seemingly independent activities

that need to be closely correlated. As a

result, we need a way to define

complicated test scenarios as well as

measure how well we exercise such

scenarios and corner cases.

The reuse of many hardware IP blocks in a

mix-and-match style suggests reuse of the

verification components as well. Many

companies treat their verification IP as a

valuable asset, sometimes valued even

more than the hardware IP. Typically,

there are independent groups working on

the subsystems, thus both the challenges

and the possible benefits of creating

reusable verification components are

magnified.

1.1 TYPICAL SOC VERIFIACTION FLOW

The SOC verification undergoes

many stages of verification during the

cycle of design. A typical flow of

verification starting from the specifications

to design sign off is shown in Figure 1.1.

Figure 1.1 SoC Verification Flow

As shown in the design flow hardware part

and software part will be segregated and

they are developed in parallel. Design

engineers will develop RTL models from

specifications and also write test bench for

their blocks. Verification engineers setup

the verification environment like tool

integration, scripts, etc.

Typical design verification flow consists

of following steps as design goes from

design entry to tapeout.

1. Functional Verification

2. Timing Verification

3. Physical Verification

1.1.1 Functional Verification

In functional verification,

engineers checks correctness of all features

specified in design and this is carry out by

RTL simulations of design. In RTL

simulations, set comprehensive test cases

are driven through Testbench setup and

these test cases includes the sequences that

are required to verify the scenarios. After

this the functionally verified design with

error free is fed to synthesizer and this will

generate gate level netlist for specified

design technology.

1.1.2 Timing Verification

RTL simulations are run without

timing information and it is not capable of

finding potential design issues due to

timing violations. Timing verification is

carryout on synthesized netlist and called

gate level simulations with timing

information files for different corner cases

called SDF. The netlist is nothing but gate

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

287

All Rights Reserved © 2016 IJARECE

level description of the design. False paths

(FP) and multi-cycle-paths (MCP) are

timing exceptions that present a

particularly difficult problem when trying

to achieve the timing closure for high-

performance designs. Typically these

exceptions (as well as all timing

constraints) are considered late in the

design cycle and are specified in response

to timing problems during verification. For

optimum timing results, all timing

exceptions must be guaranteed to be

correct. So any potential timing violations

those were not caught in STA can be

caught in gate level simulations during

netlist verification.

1.1.3 Physical Verification

Layout vs. Schematics (LVS),

Design Rule Checking(DRC), Signal

integrity, etc. is covered in physical

verification. In DRC all physical

measurements are verifies as per specified

design technology (e.g. TSMC 180nm,

UMC 65nm Technology, etc.). In LVS the

developed layout is compared with

required schematic and their connections

with power supplies and interconnection

between the cells. Finally designed RTL

models are sent to fabrication and

successive validation/testing will be

carried out on raw chip to investigate the

indeed functionality before sending them

to customer.

1.2 MOTIVATION

As today SOC design technologies

becomes more and more complex design

with more cores present on a single chip

operating at higher speeds, the design has

to be verify thoroughly for its

completeness and indeed functionality. So

it requires robust verification environment

i.e. Testbench which need to be organize

to suit for most of the similar design i.e.

developing more generic environment

gives the industry to produce more

products in less time.

The objective of work included:

1.In a system-on-chip (SOC) design flow,

the designed behavioral model i.e. register

transfer level (RTL) code undergoes

several transformations before it goes to

synthesis. During each transformation, the

design logical behavior needs to be

verified for it‟s indeed functionality.

2.The typical complex SoC contains

several components/blocks, that are having

interconnection with each other and also

those will be used for the host interface. So

the functionality of these modules should

be verified.

3.Perform gate level simulations with

SDFs to verify any timing violations,

functional aspects of synthesized design.

4.Run the regressions periodically to know

percentage of verification coverage for

design.

Deliverables included:

1. Development of comprehensive

test scenarios for module level and chip

level to achieve zero bugs in design.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

288

All Rights Reserved © 2016 IJARECE

2. The developed test cases must

cover/verify all the features specified in

design requirement.

3. The test cases should ensure less

debugging efforts with maximum

reusability for future IPs.

Key tools to be used:

1. Software: Linux, Cadence Ncsim

simulator, Synopsys Novas debug

Platform.

2. Languages: Perl, TCL, Verilog and

VHDL.

1.4 ORGANIZATION OF REPORT

This report is organized in to 5

chapters.

Chapter 1 gives a brief introduction

about the importance of the system on chip

and the typical intellectual property design

verification flow that is followed in the

industry, motivation behind this project

and the time plan that was followed in the

execution of project.

Chapter 2 gives a brief description

about Wi-Fi Technology and also gives

brief introduction about 802.11 protocol

standards and its classification. It also

describes the typical architecture of a Wi-

Fi SOC at chip level and briefly explains

about the components present in this chip.

Chapter 3 describe about the

Testbench environment that was set up for

verification and flow of testcase

generation. It gives brief introduction to

functional aspects of block and also it

introduces the gate level simulation

methodology with SDF.

Chapter 4 illustrates the basic

functional behavior of PMU and Clock

Generation Block through obtained

waveforms. The timing violations that

were caught during GLS are also

explained though waveforms and the final

regression status also presented in this

chapter.

Chapter 5 talks about the future

scope of the project and also the

conclusions drawn from the results.

 BACKGROUND THEORY

 This chapter gives a brief description

about Wi-Fi Technology and also gives

brief introduction about 802.11 protocol

standards and its classification. It also

describes the typical architecture of a Wi-

Fi SOC at chip level and briefly explains

about the components present in this chip

like MAC hardware, PHY core, JTAG,

PMU, etc.

 Wi-Fi, known as a popular wireless

networking technology uses radio waves to

provide high-speed Internet connections.

The Wi-Fi provides wireless connectivity

by allowing the users to communicate in

the band of 2.4GHz and 5GHz.The

wireless adapter will translate the data sent

by the user, into a radio signal which is

then sent, via an antenna, to a decoder

popularly known as the router. After

decode, the data will then be sent to the

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

289

All Rights Reserved © 2016 IJARECE

Internet through a wired Ethernet

connection. As the wireless network

functions as a duplex system, the data

received through the Internet will get

passed on to the router, and then it gets

coded into a radio signal which will be

received by the wireless adapter. The

wireless networks uses radio frequency

(RF) technology, when this radio

frequency current is supplied to an

antenna, an EM field is created which will

then propagate through space.

2.1 SPECIFICATION REVIEW

IEEE 802.11 is a set of media

access control (MAC) and physical

layer (PHY) specifications for

implementing wireless local area

network (WLAN) computer

communication in the 2.4, 3.6, 5,

and 60 GHz frequency bands. They are

created and maintained by

the IEEE LAN/MAN Standards

Committee (IEEE 802).

Table 2.1: 802.11 Protocol Network

Standards

The base version of the standard was

released in 1997, and has had subsequent

amendments. The standard and

amendments provide the basis for wireless

network products using the Wi-Fi brand.

While each amendment is officially

revoked when it is incorporated in the

latest version of the standard, the corporate

world tends to market to the revisions

because they concisely denote capabilities

of their products. As a result, in the market

place, each revision tends to become its

own standard. Table 2.1 gives different

protocols defined after first 802.11

protocol and their operating frequency,

bandwidth, possible maximum data rate,

MIMO support and range.

2.2 TYPICAL ARCHITECTURE

OF WLAN SoC

The typical architecture of wireless

local area network (WLAN) SoC with all

integrated modules is shown in Figure 2.2.

It includes protocol driver system which is

having MAC, PHY and RF modules, host

interface modules like PCIE or SDIO,

802.11

protocal

year Frequen

cy(GHz)

Bandwidt

h(MHZ)

Max. Data

Rate(Mbit/s)

MIMO Indoor

Range

(m)

Outdoor

Range(

m)

802.11 1997 2.4 22 2 No 20 100

A 1999 5/3.7 20 54 No 35 120

B 1999 2.4 22 11 No 35 140

G 2003 2.4 20 54 No 38 140

N 2009 2.4/5 20,40 65,135 4 70 250

Ac 2013 5 20,40,80,

160

86,180,390,7

80

8 35 250

https://en.wikipedia.org/wiki/Media_access_control
https://en.wikipedia.org/wiki/Media_access_control
https://en.wikipedia.org/wiki/Media_access_control
https://en.wikipedia.org/wiki/Physical_layer
https://en.wikipedia.org/wiki/Physical_layer
https://en.wikipedia.org/wiki/Wireless_LAN
https://en.wikipedia.org/wiki/Wireless_LAN
https://en.wikipedia.org/wiki/Wireless_LAN
https://en.wikipedia.org/wiki/IEEE_802.11y-2008
https://en.wikipedia.org/wiki/IEEE_802.11ad
https://en.wikipedia.org/wiki/Institute_of_Electrical_and_Electronics_Engineers
https://en.wikipedia.org/wiki/Local_area_network
https://en.wikipedia.org/wiki/Metropolitan_area_network
https://en.wikipedia.org/wiki/IEEE_802
https://en.wikipedia.org/wiki/Wi-Fi

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

290

All Rights Reserved © 2016 IJARECE

power management unit, PLL unit which

drives the clock signal to each module

present in SoC.

Figure 2.1: Typical Architecture of Wi-Fi

Soc

The architecture of Wi-Fi SOC can be

broadly divided as follows.

1. Protocol Driver

This set of hardware basically

implemented as per protocol defined like

802.11n/ac.

i. Medium access Controller

hardware

ii. PHY hardware including ADC,

DAC

iii. RF module

2. System Core

This set of hardware is responsible for

system initialization, reset and debugging.

It also contains PLL block which is

primary source of clock though out the

chip.

i. PMU

ii. JTAG

iii. PLL

3. Host interface

This interface actually communicate with

external world like Wi-Fi enabled laptop,

Setup box or Wi-Fi routers. PCIE and

SDIO are two major interfaces are used as

host interfaces in industry.

4. On chip processor and memories

On chip processor is used to system boot

up and instruction execution issued by

MAC hardware. All these processors will

have associated memories and also

external memories present for

software/firmware load purpose while

system is waking up.

Major functionalities of MAC hardware:

1. Addressing of destination stations

(both as individual stations and as groups

of stations)

2. Conveyance of source-station

addressing information.

3. Protection against errors, generally

by means of generating and checking

frame check sequences

4. Control of access to the physical

transmission medium.

5. Discard malformed frames.

 METHODOLOGY

This chapter gives a brief

description about the methodology that

was followed in the project. It describe

about the Testbench environment that was

set up for verification and flow of testcase

generation. It gives brief introduction to

functional aspects of block and also it

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

291

All Rights Reserved © 2016 IJARECE

introduces the gate level simulation

methodology with SDF.

3.1 TEST BENCH SETUP

A test bench or testing workbench

is a virtual environment used to verify the

correctness or soundness of a design or

model. Test bench refers to an

environment in which the product under

development is tested with the aid of

software and hardware tools.

3.1.1 TEST BENCH ARCHITECTURE

The test bench architecture which

is used for current SoC is shown in Figure

3.1. It mainly contains input stimuli, test

bench and device under test (DUT). A

directed TCL script is the input stimuli for

test bench which have default settings and

set of scenarios to be verified. A typical

SoC have host interfaces PCIE, SDIO, etc.

and JTAG interface.

Figure 3.1: Test Bench Architecture

PCIE and SDIO can be access through the

PCIE interface and SDIO interface

respectively of DUT. JTAG can be access

through the GPIO (general purpose

input/output) pins. PCI master will drive

applied input stimulus to target module

like PCIE, SDIO or JTAG through PCI

BUS. We need to specify in our test case

on which interface test case needs to run.

All testcases can be run though any

interface by providing interface command

and the script will take care of handling of

choosing interfaces.

3.1.2 TEST CASE GENERATION AND

VERIFICATION

The flow of generating test case and its

verification is shown in Figure 3.2.

Figure 3.2: Test Case Generation and

Verification Flow

As shown in figure, the design modules

and respective test bench modules are

compiled and elaborated using simulation

tool. Using SoC specific scripting file

generate directed test case which contains

all the initial settings, interface (jtag, pcie,

sdio, etc) to run the test case and input file

having set of scenarios to be verified. Now

this directed test case run on simulation

tool. Check for any errors which might be

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

292

All Rights Reserved © 2016 IJARECE

due to input directed test files or debug

any design issues using debugging tools. If

test is failing due to scrip errors update

then and re run the test case and update. If

test case failing due to design issues report

bugs to respective designers and after

design fix compile and elaborate again and

run the test case. The above steps needs to

be follow till test case pass and then

update the status.

3.2 FUNCTIONAL DESCRIPTION OF

MODULES

3.2.1 Power Management Unit

In low power design a set of

methods are used to reduce power

consumption of SoC. Out of all methods

Power management unit especially plays

crucial role in low power consumption. So

in almost all the SoC, power management

is being integrated. Power management

Unit (PMU) is the most important core

which manages clock/reset and power

resources for the entire chip. The

functioning of PMU is given high priority

as many cores function on the clocks

driven by it from the Phase Locked Loop

(PLL).

PMU dynamically selects clocks to be

operated, based on request from one or

more cores and availability of resources.

The PMU manages the power and clock

resources for the entire chip, including

Clock/Reset Management, Dynamic Clock

control of Throughput clock, Low Power

Clock and Ideal Mode Clock for all the

modules of SoC. Driving clocks from PLL

and their management. Generation of

power island-specific resets, extended

Power On Reset (POR). Power

Management like Controlling LPO clock

frequency. Power Island on/off control that

makes some resources off depending on

the necessity .Strapping options to control

power-up mode

The Power Management Unit (PMU)

controls the oscillators and clocks with the

capability of enabling or disabling the

clock to the different peripherals

individually in addition to enabling or

disabling and configuring the available

oscillators. This allows for minimizing

energy consumption by disabling the clock

for unused peripherals or having them run

at lower frequencies.

Resource Management:

Resource management contains the

information about resource power

up/down sequence to be follow for all the

states. Each state has the dependency on

other states which must be powered

up/down before the present state powered

up/down. It also contains the power

up/down time for each resource in

sequence.

3.2.2 Clock Selection Module

PMU clock select module will

decides output clock to be selected, based

on clock request from one or more cores as

well as on resource availability status. Any

core request Throughput clock its checks

whether resource current state is

throughput avail, if state is throughput

avail then its selects throughput as system

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

293

All Rights Reserved © 2016 IJARECE

clock. If one core requests throughput

clock and another core request Low power

clock, then its gives the priority to

throughput clock if throughput clock is

available or it selects Low power clock as

system clock. Clock select block follows

the below priority in selecting output

clocks.

Throughput clock > Low power clock >

Ideal mode clock

Figure 3.3: Clock Select Module

.

3.2.3 Clock Generation Block and PLL

The clock generation block is

shown in Figure 3.4. Clock divider block

gives the wide range of frequency signals

which goes to different cores present on

SoC. In clock divider block VCO

frequency is divided by frequency dividers

for accomplishing all cores wide range of

clock frequency requirements. Finally

these frequencies are given to clock select

logic block and output clocks can be select

using clock_sel signal and request from

individual cores which is output from

PMU block.

Figure 3.4: Clock Generation Block

Phased- Locked Loop:

Phase Locked Loop (PLL) is a

fundamental part of radio, wireless and

telecommunication

Technology. The PLL circuit performs

frequency multiplication, via a negative

feedback mechanism, to generate the

output frequency Fvco, in terms of the

phase detector comparison frequency, Fr.

The phase-locked loop allows stable high

frequencies to be generated from a low-

frequency reference. Any system that

requires stable high frequency tuning can

benefit from the PLL technique.

Registers (PMU and PLL):

The default control values for PMU

core and PLL block present in these

registers. Resource management and clock

requests done through the PMU registers.

PLL registers have default divider integer

and fractional values. Clocks request from

MAC and PHY and clock gating can be

done through PLL registers.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

294

All Rights Reserved © 2016 IJARECE

3.2.4 Clock Gating

Clock gating is a popular technique

used in many synchronous circuits for

reducing dynamic power dissipation.

Clock gating saves power by adding more

logic to a circuit to prune the clock tree.

Pruning the clock disables portions of the

circuitry so that the flip-flops in them do

not have to switch states. Switching states

consumes power. When not being

switched, the switching power

consumption goes to zero, and

only leakage currents are incurred.

Figure 3.5: Latch Based Clock Gating

Clock gating works by taking the enable

conditions attached to registers, and uses

them to gate the clocks. Therefore it is

imperative that a design must contain these

enable conditions in order to use and

benefit from clock gating. This clock

gating process can also save significant die

area as well as power, since it removes

large numbers of muxes and replaces them

with clock gating logic. This clock gating

logic is generally in the form of

"Integrated clock gating" (ICG) cells.

However, note that the clock gating logic

will change the clock tree structure, since

the clock gating logic will sit in the clock

tree.

Clock gating logic can be added into a

design in a variety of ways:

1. Coded into the RTL code as enable

conditions that can be

automatically translated into clock

gating logic by synthesis tools (fine

grain clock gating).

2. Inserted into the design manually

by the RTL designers (typically as

module level clock gating) by

instantiating library specific ICG

(Integrated Clock Gating) cells to

gate the clocks of specific modules

or registers.

3. Semi-automatically inserted into

the RTL by automated clock gating

tools. These tools either insert ICG

cells into the RTL, or add enable

conditions into the RTL code.

These typically also offer

sequential clock gating

optimizations.

Any RTL modifications to improve clock

gating will result in functional changes to

the design (since the registers will now

hold different values) which need to be

verified. Sequential clock gating is the

process of extracting/propagating the

enable conditions to the

upstream/downstream sequential elements,

so that additional registers can be clock

gated.

https://en.wikipedia.org/wiki/Power_dissipation
https://en.wikipedia.org/wiki/Clock_tree
https://en.wikipedia.org/wiki/Flip-flop_(electronics)
https://en.wikipedia.org/wiki/Leakage_(semiconductors)
https://en.wikipedia.org/wiki/Multiplexer
https://en.wikipedia.org/wiki/Register_transfer_level

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

295

All Rights Reserved © 2016 IJARECE

3.3 METHODOLOGY OF GATE

LEVEL SIMULATIONS EXECUTION

3.3.1 Introduction to Timing Analysis

Timing and delay information and

analysis are very important and parallel

flow in the ASIC design process because it

brings higher level degree of realism to be

implemented into the circuit model.

Typically this timing information does not

include in Hardware description model and

the outputs of these modules are

instantaneously got resolved. This strips

the designer of important details such as

propagation delay, pulse width, setup and

hold times. The setup and hold violations

could very easily lead to incorrect state

transitions from the design which is not

intended as per the functional

requirements.

Timing characterization of entire design is

tedious and time consuming endeavor and

it is often ignored process in a design. So

this allows most designers to be primarily

concerned with the functional correctness

of a circuit. In the past, this approach may

have been adequate for lower speed

designs. However, as technology continues

to mature, meeting timing constraints for

designs becomes just as important as

functional correctness.

Design Flow with No Timing:

A typical Design entry which is

implemented in HDL to layout design flow

for ASICs is shown in figure. Essentially

this HDL model is the design which is to

be implemented. RTL simulations will run

on this model for verifying functional

aspects of intended behavior. The

synthesis tool generates gate level netlist

for a given HDL modeled design using

standard digital cell library respective to

manufacturing technology. After this, gate

level netlist go under several design flows

including floor planning and an automatic

place and route tool to generate the layout

for the design.

Figure 3.6: Design Flow with No Timing

At this point the design is well on its way

to being finished. The design could be

simulated and it could also be functionally

verified to be correct. However, up to this

point, no timing information has been

included. There is no knowledge about

whether or not setup and hold times can be

met. There is no knowledge that

propagation delays are appropriate. The

design may be functionally correct, but

after getting the chip back from

fabrication, it still might fail. The reason

would be that no timing information was

included in the verification process and

critical paths were not properly identified.

Design Flow with Timing

Additional timing characterization

has to be done on the design in order to

prove that it will not fail. The design flow

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

296

All Rights Reserved © 2016 IJARECE

should be changed to include delay

extraction and back annotation.

Figure 3.7: Design Flow with Timing

using Back Annotation

Delay extraction will allow us to get

delays from the placed and routed design.

Back annotation will then take this delay

information and place it back into the gate

level Verilog model. Gate level

simulations will carry out on this netlist for

verifying design after place and route to

ensure indeed functionality. At this point,

the design can be simulated with timing

information to ensure both functional and

timing correctness.

3.3.2 Motivation for running gate level

simulations

RTL simulation is the basic

requirement to signoff design cycle, but as

operating frequencies of SOC

tremendously increased whole design need

to properly verify functionally as well as

for timing requirements. This is

accomplishing by carry out static timing

analysis and Dynamic timing analysis.

Static timing analysis does not depend on

any data or logic inputs, applied at the

input pins. The input to an STA tool is the

routed netlist, clock definitions (or clock

frequency) and external environment

definitions. The STA will validate whether

the design could operate at the rated clock

frequency, without any timing violations.

Limitations of STA lead to increasing

trend in the industry to run gate level

simulations (GLS) before going into the

last stage of chip manufacturing.

Improvements in static verification tools

like Static timing analysis (STA) and

Equivalence Checking (EC) have

leveraged GLS to some extent but so far

none of the tools have been able to

completely remove it. GLS still remains a

significant step of the verification cycle

footprint.

The main reasons for running GLS are

as follows:

1. To verify the power up and reset

operation of the design and also to

check that the design does not have

any unintentional dependencies on

initial conditions.

2. To give confidence in verification of

low power structures, absent in RTL

and added during synthesis.

3. It is a probable method to catch multi

cycle paths if tests exercising them

are available.

4. Power estimation is done on netlist

for the power numbers.

5. To verify DFT structures absent in

RTL and added during or after

synthesis. Scan chains are generally

inserted after the gate level netlist has

been created. Hence, gate level

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

297

All Rights Reserved © 2016 IJARECE

simulations are often used to

determine whether scan chains are

correct. GLS is also required to

simulate ATPG patterns.

6. Tester patterns (patterns to screen

parts for functional or structural

defects on tester) simulations are done

on gate level netlist.

7. To help reveal glitches on edge

sensitive signals due to combination

logic. Using both worst and best-case

timing may be necessary.

8. It is a probable method to check the

critical timing paths of asynchronous

designs that are skipped by STA.

9. To avoid simulation artifacts that can

mask bugs at RTL level (because of

no delays at RTL level).

10. Could give insight to constructs that

can cause simulation-synthesis

mismatch and can cause issues at the

netlist level.

11. To check special logic circuits and

design topology that may include

feedback and/or initial state

considerations, or circuit tricks. If a

designer is concerned about some

logic then this is good candidate for

gate simulation. Typically, it is a good

idea to check reset circuits in gate

simulation. Also, to check if we have

any uninitialized logic in the design

which is not intended and can cause

issues on silicon.

12. To check if design works at the

desired frequency with actual delays

in place.

13. It is a probable method to find out the

need for synchronizers if absent in

design. It will cause “x” propagation

on timing violation on that flop.

Figure 3.8: GLS Execution flow

Execution Strategy for GLS

1. Planning the test-suite wisely to be

run in GLS

In highly integrated products it is not

possible to run gate simulation for all the

SoC tests due to the simulation and debug

time required .Therefore, the list of vectors

which are to be run in GLS has be selected

judiciously. The possible candidates for

this list are

i. Testcases involving

initialization, boot up.

ii. All the blocks of the design

must have atleast one testcase for

GLS.

iii. Testcases checking clock

source switching.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

298

All Rights Reserved © 2016 IJARECE

iv. Cases checking clock

frequency scaling.

v. Asynchronous paths in the

design.

vi. Testcases which check

entry/exit from different modes

of the design.

vii. Dedicated tests for timing

exceptions in the STA.

viii. Patterns covering multi

clock domain paths in the design

ix. Multi reset patterns are a

good candidate for GLS

It must also be made sure that the test

cases selected to be run in GLS are

targeting the maximum desired operating

frequency of the design. Should there be

no time constraints, all tests run in RTL

simulations can be rerun in GLS. Also, if

there are no tests fulfilling the criteria

mentioned above, then they should be

coded.

2. Test bench updates for GLS

A list of all the synchronizer flops is

generated using CDC tools. Also, other

known asynchronous paths where timing

checks needs to be turned off are analyzed

and complete list of such flops is prepared

which also includes reset synchronizers.

The timing checks are turned off on all

such flops to avoid any redundant

debugging, otherwise they will cause “x”

corruption in GLS. This work should be

ideally done before the SDF arrives .It

may happen that the name of the

synchronizers in RTL and the netlist are

different. All such flops should be updated

as per netlist .Also, the correct standard

cell libraries, correct models of analog

blocks, etc. need to be picked for GLS.

3. Initialization of non-resettable

flops in the design

One of the main challenges in GLS is the

“x” propagation debug. X corruption may

be caused by a number of reasons such as

timing violations, uninitialized memory

and non resettable flipflops. There are

uninitialized flops in design which by

architecture are guaranteed to not cause

any problems (if they settle to any value at

start). Thus, there is a need to find out all

such flops in the design (which are

reviewed with designers) and initialize

them to some random value (either 0 or 1)

so as to mimic silicon.

4. Unit delay GLS for Testbench

cleanup

This step is not compulsory but is

generally very fruitful if employed in the

GLS execution. The setup is done for unit

delay GLS (no SDF) and the testcases that

are planned to be run on gate level are run

with this setup to clean the testbench. This

is done because the unit delay simulations

are relatively faster (than those with SDF)

and all the testbench/testcase related issues

can be resolved here (for example -

change probed logic hierarchy from rtl to

gate, wrong flow of testcase, use of

uninitialized variables in the test cases that

can cause corruption when read via core,

etc). Running the unit delay GLS is

recommended because one can catch most

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

299

All Rights Reserved © 2016 IJARECE

of the testbench/testcase issues before the

arrival of SDF. After the SDF arrives,

focus should be more on finding the real

design/timing issues, so we need to make

sure that the time does not get wasted in

debugging the testcase related issues at

that time.

5.Annotation warnings cleanup on SDF

When the SDF is delivered to verification

team, then the simulations are run with the

SDF/netlist. Specific tool switches need to

be passed which picks us the SDF and tries

to annotate the delays mentioned in the

SDF to the corresponding instances/arcs in

the netlist. This is known as back-

annotation.

During this process, many annotation

warnings are encountered which need to

be analyzed and either sorted out or

waived off by the design team. Most

important warnings which need to be

looked into are the ones which are due to

non-existent paths i.e. the SDF has an arc

but netlist does not have it. Also, there can

be mismatch between the simulation

model “specify” block and .lib of the IP.

5. Running GLS with SDF:

Early SDF (for initial debug) this step

involves use of a SDF in which timing is

met at a lower frequency than target and

GLS can be run at that frequency. This

helps in cleaning up the flow and finding

certain issues before the final SDF arrives.

This step starts with the SDF in which

timing is met at target frequency. The

entire setup is done and the planned

pattern-suite is run on this setup and

failures needs to be debugged according to

a priority list which should be made before

hand. All the high priority patterns need to

be debugged first.

Challenges faced during GLS setup

GLS with SDF delays annotated is

usually very slow and time consuming. A

lot of planning is needed to wisely select

the patterns that need to be simulated on

netlist. Run-time for these tests and

memory requirements for dump and logs

must also be considered. Identifying the

optimal list of tests to efficiently utilize

GLS in discovering functional or timing

bugs is tough. These are to be decided with

discussions with timing team and design

team on which paths are timing

critical/asynchronous and needs to be

checked.

GLS is much more difficult than RTL

simulations as delays of gates,

interconnects comes into picture and RTL

assumptions for arrival of data/clock may

mismatch causing failures. During the

initial stages of GLS, identifying the list of

flops/latches that needs to be initialized

(forced reset) is a big hurdle. The

pessimism in simulations would cause “x”

on the output of all such components

without proper reset, bringing GLS to a

standstill. If approved by design and

architecture team, these initializations

should be done to move forward.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

300

All Rights Reserved © 2016 IJARECE

During synthesis, the port/nets may get

optimized or re-named to meet the timing

on these paths. Monitors/Assertions

hooked in Testbench during RTL

simulations need to be revised for GLS to

make sure the intended net is getting

probed. Also, in netlist there can be

inverters that can be inserted on that signal

driver due to boundary optimization and

can cause false failures (not having any

design issues). This is really tough to

figure out and debug.

If the gate level simulation with SDF is

done without a complete synchronizer list,

then failure debug to find such cases on

gate level is quite cumbersome. Multiple

debug iterations may happen in GLS to

find out many such flops.

Debugging the netlist simulations is a big

challenge. In GLS, models of the cells

make the output “x” if there is a timing

violation on that cell. Identifying the right

source of the problem requires probing the

waveforms at length which means huge

dump files or rerunning simulations

multiple times to get the right timing

window for violations. The latest tools are

offering “x” tracing techniques for quickly

tracing the source of “x” propagation.

Such tool features need to be explored. All

said and done, it can be concluded that one

requires a lot of patience while debugging

the GLS waveforms.

In short, despite being a time consuming

activity and having many challenges in

setup and debug, GLS is a great

confidence booster in the quality of the

design. It can uncover certain hidden

issues which get missed out or difficult to

find by RTL simulations. This is the

reason many organizations prefer this

activity before tape-out because it is more

close to the actual silicon and gives a fairly

good idea about how the design will

behave in real. The probability of having

sound sleep after tape out improves with

GLS.

3.3.3 Standard Delay Format and

Generation of SDF Files

This section is an overview of the

Standard Delay Format (SDF). The best

description of what the SDF is can be

found in the opening paragraph of the

IEEE Draft Standard.

“The Standard Delay Format (SDF) was

designed to serve as a simple textual

medium for communicating timing

information and constraints between

electronic design automation tools. The

original version was designed by Rajit C.

Chandra in 1990 while at Cadence Design

Systems, and was intended as a means of

communicating macrocell and

interconnects delays from Gate Ensemble

to Verilog-XL, Veritime and other stand-

alone tools requiring timing data“

The SDF was designed from the ground up

to be an easy way to convey timing

information to a simulator. The SDF file

can furthermore be utilized by other design

tools. It can be leveraged to convey design

constraints identified during timing

analysis to layout tools (forward

annotation) and it can also be used for post

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

301

All Rights Reserved © 2016 IJARECE

layout timing analysis and simulation

(back annotation).

The figure on the following page depicts

the general flow of how to use SDF files in

an ASIC design. The SDF files are most

often generated by a delay calculator. This

delay calculator uses information from a

placed and routed design. After the SDF

file is generated by the timing calculator,

simulator will be used to back annotate

this delay information into the design

description. Timing characteristics of

ASICS are strongly influenced by

interconnect affects. This is why back

annotation is most often done post layout.

The SDF imposes no restrictions on the

precision of the timing data being

represented. This implies that the accuracy

of the timing data is dependent on the

accuracy of the timing calculator.

Figure 3.9: SDF Generation and Back

Annotation

Timing Checks

The SDF has many different timing

checks available. The important ones are

the setup, hold, recovery and width timing

checks. They will be discussed below. The

format for the timing checks is a timing

check definition followed by the

appropriate delay information. This delay

information varies for each timing check.

Setup Time: This is the setup timing

check. It is defined as the time before a

clock that the signal must remain stable in

order for that signal to successfully be

stored into the device. The format is the

keyword SETUP followed by an input port

specification followed by an output port

specification followed by the delay values.

Figure 3.10: Setup Time

Example: (INSTANCE x.a)

 (TIMINGCHECK

 (SETUP din (posedge clk)

(12))

 - - - -

 - - - -

)

Hold Time: This is the hold timing check.

It is defined as the time after a clock edge

in which a signal must remain stable. The

format is the keyword HOL followed by

an input port specification followed by an

output port specification followed by the

delay values.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

302

All Rights Reserved © 2016 IJARECE

Figure 3.11: Hold Time

Example: (INSTANCE x.a)

 (TIMINGCHECK

 (HOLD din (posedge clk)

(10))

- - - -

- - - -

)

Setup and Hold Combined: This is a

combination of setup and hold. Its format

is the keyword SETUPHOLD followed by

input port followed by output port

followed by setup delay values followed

by hold delay values.

Figure 3.12: Setup and Hold Time

Example: (INSTANCE x.a)

 (TIMINGCHECK

 (SETUPHOLD din

(posedge clk) (12) (9.5) (CCOND ~reset))

- - - -

- - - -

)

Recovery Time: The recovery time is

defined as the limit of the time between

the release of an asynchronous control

signal from the active state and the next

active clock edge. The format is the

keyword RECOVERY followed by an

input port followed by an output port

followed by the delay values.

Figure 3.13: Recovery Time

Example: (INSTANCE x.b)

 (TIMINGCHECK

 (RECOVERY (posedge

clearbar) (posedge clk) (10.5))

- - - -

- - - -

)

Removal Time: The removal shall specify

limit values for removal timing checks. A

removal timing check is a limit of the time

between an active clock edge and the

release of an asynchronous control signal

from the active state, for example between

the clock and the clearbar for a flip-flop. If

the release of the clearbar occurs too soon

after the active edge of the clock, the state

of the flip-flop shall become uncertain it

could be the value set by the clearbar, or it

could be the value clocked into the flip-

flop from the data input. In other respects,

a removal check is similar to a hold check.

The syntax for removal timing check is

described in Syntax

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

303

All Rights Reserved © 2016 IJARECE

Figure 3.14: Removal Time

Example: (INSTANCE x.b)

 (TIMINGCHECK

 (REMOVAL (posedge

clearbar) (posedge clk) (10.5))

 - - - -

- - - -

)

Width: The width timing check specifies a

limit for a minimum pulse width. If the

signal has unequal phases, two pulse

widths can be specified.

Figure 3.15: Width Timing Check

Example: (INSTANCE x.b)

(TIMINGCHECK

(WIDTH (posedge clk)

(30))

(WIDTH (negedge clk)

(16.5))

- - - -

- - - -

)

Verilog Back Annotation:

Back annotation is the process by which

timing information is added into a design

so that the design can be simulated with

realistic delays. For this section back

annotation requires that a SDF file has

been generated for a design and that

specify blocks with path delays have been

defined for cells.

3.3.4 Importance of Corner case

Simulations

The propagation delay varies

significantly due to variations in transistor

operating parameters over the

environmental changes which include

operating supply voltages and temperature

variations and process changes. Process

variations are due to variations in the

manufacture conditions such as

temperature, pressure and dopant

concentrations.

 A higher voltage makes a cell

faster and hence the propagation delay is

reduced

 A higher temperature will decrease

the threshold voltage

 Variations in the process parameter

leads to transistors have different transistor

lengths throughout the chip. This makes

the propagation delay to be different.

These variations can be modelled under

different corner case like fast (minimum

delay) and slow (maximum delay) and

these are shown in Table.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

304

All Rights Reserved © 2016 IJARECE

Table 3.1: Corner cases

So apart from typical SDF generation we

need generate SDF for maximum and

minimum corners too using worst case

conditions and finally using these SDF,

carry out gate level simulations for

verifying the design under corner

conditions this eventually boost the

confident on designed modules. Run slow

corner simulations for delay analysis and

fast corner simulations for power and race

conditions like hold time analysis.

3.4 TOOLS USED IN PROJECT

3.4.1 Cadence Ncsim Simulator

Ncsim from Cadence is used as a

solution for all simulation and verification

environments. It provides engines for

Coverage, constraint solver, Assertions to

name a few. Ncsim provides many options

to collect and analyze the simulation data

effectively and debug them using

waveform dumping. This tool is used for

compilation and elaboration of both

Verilog and VHDL model and commands

can be given from console or GUI

provided by vendor.

3.4.2 NOVAS DEBUG PLATFORM

(VERDI)

Novas Debussy debug system,

Verdi automated debug system is used for

the debugging and has the best interactive

feature for debugging when we want to

back trace a signal, it will be able to show

all the drivers respective to that load, and

also it has the facility for grouping of

signals and this also comes into handy

when analyzing the signals. The Verdi

Automated Debug System is an advanced

open platform for debugging digital designs

with powerful technology that helps you

comprehend complex and unfamiliar design

behavior, automate difficult and tedious

debug processes and unify diverse and

complicated design environments.

nTrace: A source code viewer and analyzer

that operates on the KDB to display the

design hierarchy and source code for

selected design blocks. It allows the tracing

of signals across the design.

nWave: A state-of-the-art graphical

waveform viewer and analyzer that is fully

integrated with Verdi. It allows viewing the

signals value and waveform. Figure 3.4.1

shows GUI interface for nTrace and nWave.

 Environmental

Parameter

Process

Parameter

Corner Voltage Temperature Vth

Voltage

Fast Vnom -40
0
C Vthnom -

∆Vth

Slow Vnom 125
0
C Vthnom -

∆Vth

Typical Vnom 27
0
C Vthnom -

∆Vth

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

305

All Rights Reserved © 2016 IJARECE

Figure 3.16: Verdi window for nTrace and

nWave.

nSchema: As shown in figure 4.4.2 a

schematic viewer and analyzer that

generates interactive debug-specific logic

diagrams showing the structure of selected

portions of a design. Flexible schematics and

block diagrams give you the ability to

display logic and connectivity using familiar

symbols.

Figure 3.17: nSchema Window

ANALYSIS

This chapter shows the results

which illustrate basic functional behavior

of PMU and Clock Generation Block

through obtained waveforms. The timing

violations that were caught during GLS are

also explained though waveforms and the

regression status while verifying these

blocks at the end of the project.

4.1 OUTPUT WAVEFORM

ANALYSIS

Figure 4.1 describes the basic

Clock request from different cores and

final PMU output for requests based on

availability of recourses that are required

for current state requirement. In the

present SOC. there are total six cores

present and each core has separate clock

request depending on system requirement.

Here before request for any clock, we must

ensure the all the resources should be in

„ON‟ state and clock_avail signal should

go active.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

306

All Rights Reserved © 2016 IJARECE

 Figure 4.1: Output waveform shows

Clock request from different cores and

PMU output for requests.

Figure 4.2 describes how exactly PMU

determines the priority over the request

and availability of resources. Here it

explains PMU final clock select for a

single core with multiple clock requests.

Initially all clocks (H_clk, LP_clk and

IM_clk) are available and there is request

for H_clk so T_clk is selected as final

clock to be run. After some time T_clk

turned off, now PMU look for next

available clock and LP_clk is available so

PMU select LP_clk as final clock even

though there is a request for T_clk.

Similarly same priority is followed for

LP_clk over IM_clk.

 Figure 4.2: Output waveform shows PMU

priority over request and availability of

resource

Figure 4.3 explains programming of PLL

dividers and respective output frequency

on PLL VCO output. Here PLL is

provided with set registers which can be

program as per require of

Figure 4.3: Output waveform shows

programming of PLL dividers and

respective frequency

clock frequency. There are two parts in

divider registers first part is integer divider

and fractional part for fine tune of signal

frequency. In this the reset sequence of

PLL has been shown and PLL is in close

loop and it must not lost its lock during

small step change of frequencies which

can be observed in this waveform.

Figure 4.4 describes clock gating

implematation which is a low power

technique.Here clock gating block

generates output signal based on clock

enable during which gives output as input

and rest of the skips the pulses. The

number of pulses need to be skip and

number of pulses need to pass can be

program through registers and using these

values internal timers will toggle clock

enable signal. In following example total

seven pulses have been skipped and only

three pulses are present on output signal

and this repeats for every ten pulses.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

307

All Rights Reserved © 2016 IJARECE

Figure 4.4: Output waveform shows Clock

Gating Implementation.

Figure 4.5 shows “X‟ propagation due to

non resettable flipflop. Here a 4-bit

register outputs are initially „X‟ and when

there is a first rising edge of clock with

rst_n, clr are being at „0‟, all fip flop

should get reset. But second flipflop is not

resettable and this cause „X‟ propagation.

After releasing reset also second flipflop is

sampling the input as „X‟ at the output.

Figure 4.5: Output waveform shows “X‟

propagation due to non resettable flipflop.

Figure 4.6 shows one possible way of

handling „X‟ propagation problem. Here at

the starting of simulation the output of

second flipflop is deposited to logic „0‟

and this make sure that output is at logic

„0‟ till next assignment for this output as

per logic. So this eliminates „X‟

propagation due to non resettable flipflop.

Figure 4.6: Output waveform shows

deposing „0‟ on non resettable flipflop

output

Figure 4.7 shows another possible way of

handling „X‟ propagation problem. Here at

the starting of simulation the output of

second flipflop is deposited to logic „1‟

and this make sure that output is at logic

„1‟ till next assignment for this output as

per logic. So this eliminates „X‟

propagation due to non resettable flipflop.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

308

All Rights Reserved © 2016 IJARECE

Figure 4.7: Output waveform shows

deposing „1‟ on non resettable flipflop

output.

Figure 4.8 shows setup time violation.

Here enabled signal and resetb of flipflop

are at logic „1‟ so input value is sampled at

output at rising edge of clock. But as

shown in figure the minimum amout of

time during which data at input is not

stable before clock edge which leads to

metastebility state of flipflop and this

makes flipflop output as „X‟

Figure 4.8: Output waveform shows setup

time violation

4.2 REGRESSION STATUS RESULTS

To know the amout verification

completed we run the regressions

periodocally or/and after any design

changes in RTL. Here these regressions

have been run for both RTL simulations

and gate level simulations though out the

projects. The following tables give

regression status for RTL and GLS

simulations of Chip1 and Chip2.

Table 4.1: Regression status for RTL

simulations of Chip1

Modul

e

Total no

of

Testcase

s

No. of

testcase

s

passed

at

starting

of

project

No. of

testcase

s

passed

at end

of

project

PMU 36 9 36

CGB 29 12 29

Table 4.2: Regression status for Gate

Level Simulations of Chip1

Modul

e

Total no

of

Testcase

s

No. of

testcase

s

passed

at

starting

of

project

No. of

testcase

s

passed

at end

of

project

PMU 13 5 13

CGB 15 4 15

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

309

All Rights Reserved © 2016 IJARECE

Table 4.3: Regression status for RTL

simulations of Chip2

modul

e

Total no

of

Testcase

s

No. of

testcase

s passed

at

starting

of

project

No. of

testcase

s passed

at end

of

project

PMU 43 8 43

CGB 37 15 37

Table 4.4: Regression status for Gate

Level Simulations of Chip2

Modul

e

Total no

of

Testcase

s

No. of

testcase

s

passed

at

starting

of

project

No. of

testcase

s

passed

at end

of

project

PMU 15 4 15

CGB 19 7 19

 CONCLUSION AND

FUTURE SCOPE OF WORK

This chapter gives a quick

overview about the summary of the work

done during the project and also the

conclusions of the project work and the

challenges that were faced in the execution

of the project alongside the future scope of

it.

5.1 WORK SUMMARY

The main objective of the project

design verification of PMU and clock

generation block through RTL and gate

level sumulations. As design progress RTL

would go several trnasformations and at

each such case designed model must

ensure error free. In order to achieve

complete and robust design, first models of

PMU and clock generation block are

fuctionally verified through RTL

simulation with comprehensive testcases.

Fuctional verifiaction does not satisfy

complete verification so for timing

verifiaction which vital gate level

simulations have been run with sub set of

tetscases those involves reset sequence and

at clock domine crossing. Regressions

have been run periodically to know the

status og design verification.

5.2 CONCLUSIONS

The work concludes that the design

verification of Power management unit

and clock generation block has completed

successfully for two target chips. There

were many design change with respect to

first chip in both specification wise and

manufacturing technology wise. The

finctionality of these blocks thorouly

verified with help of RTL and gat level

simulations and 100% regression status

has achieved before the tapeout of two

chips. During cycle of verification several

bugs were found and out of them some are

very critical and they were reported to

respective design owners. Similarly during

gate level simulations many timing

violation have caught and reported to

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 2, February 2016

310

All Rights Reserved © 2016 IJARECE

backend team and this cycle repeated till

end of project.

5.3 FUTURE SCOPE OF WORK

The developed scripts for verifying

scenorios were made as generic which

permits future chips can adopt these

testcases with less efforts which intern

reduce design cycle. All register read or

writes have made generic to all other chips

which are design phase or architecture

phase in which by giving base address

only we run all testcases as register set

index is fixed for all core registers and this

can be easily undertand by designers and

help them to reduce dubugging efforts.

The developed test bench setup and

set comprehensive testcases can easily

migrate to system verilog platform which

is popular language for verification in

industry which provides more feasible

constructs. The existing sequences in TCL

language can directy port to System

verilog platform and there is a scope of

increase in automation in new platform.

The next step after the verification

is followed by the backend flow, and any

issues that they come across during this

process will be brought to the notice of

front end designers if they are related to

functional issues and once they are fixed

the models are delivered to the SOC team

and it goes through one more verification

flow and after successful fabrication

comes as an product in next generation

Wi-Fi SOC.

REFERENCES

[1] Lulu Feng, “Design and application of

reusable SoC verification platform”, ASIC

(ASICON), 2011 IEEE 9th International

Conference on, pp 957-960, 2011

[2] Pankaj Chauhan, et al Verifying IP–

Core based System–On–Chip Designs,

IEEE International ASIC/SOC

Conference, September 1999.

[3] SoC Verification Business Unit Mentor

Graphics, Design Challenges Thrust on

SoC Process 2004

[4] Kong Weio Susanto “A verification

Platform for a System on Chip” University

of Glasgow UK - 2003.

[5] Petlin, O. Methodology and code

reuse in the verification of

telecommunication SOCs, ASIC/SOC

Conference, 2000. Proceedings, 13th

Annual IEEE International, pp 187-191,

2000

[6]

http://www.analog.com/library/analogDial

ogue/archives/33-03/phase/index.html

[7]

http://www.tcl.tk/man/tcl8.5/tutorial/tcltut

orial.html

[8]

http://www.standards.ieee.org/news/2014/i

eee_802_11ac_ballot.html

http://www.analog.com/library/analogDialogue/archives/33-03/phase/index.html
http://www.analog.com/library/analogDialogue/archives/33-03/phase/index.html
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html

