Analysis of Various Image Inpainting Techniques Using Adaptive Wavelet transform

Madhu Mehra
Department of ECE
SSGI, Bilaspur
Yamuna Nagar, India

Vikrant Gulati
Department of ECE
SSGI, Bilaspur
Yamuna Nagar, India

Abstract— Image inpainting is archaic technique of recuperating images. In the museums this technique mostly used to recuperate images. This technique is propagated and applied to daily utilizations of life so that utilize able to recuperate the image of authentic life additionally. The general process if image inpainting is for recuperating the image divided into few steps. In first step utilize culls the object which utilize want to abstract. Then utilize to finds the more similar pixel from the image. This more similar pixel is found from circumventing information available from the image. After finding the patch information is propagated into the next image. In last step after propagating the image information from the similar pixels and user gets the recovered image. The image obtained using this algorithm is very similar to the original image and observer will not able to distinguish between damaged image and recovered image. In this paper we analysis the PSNR value with the Different images as discussed in Result section.

Index Terms— Exemplar based Image Enhancement, Inpainting Techniques, category of Image Inpainting

I. INTRODUCTION

A. Definition

Image completion is one of the key areas in image processing. It is a paramount photo-editing task which involves synthetically filling an aperture in the image. Our main aim is that the image patches remain natural under a variety of transformations (such as scale, rotation and effulgence change), and it is consequential to exploit this. We propose and investigate the utilization of different optimization methods to probe for the best patches and their respective transformations for engendering consistent, ameliorated completions. Experiments on a number of conundrum instances demonstrate that our methods outperform state-of-the-art techniques. The input to the algorithm is an image to be Inpainted i.e. pristine image and then the algorithm proceeds filling the confident value with the similar pixles and the output is an inpainted image[10] Image process is a wide field and has numerous applications in it. One amongst the primary applications of digital image was the newspaper trade. Since the starting days of art and photography, filling-in and in painting has been done by skilled artist. Imitating their performance with semi-automatic digital techniques is presently an energetic space of analysis[5].

B. EXEMPLAR-BASED IMAGE ENHANCEMENT

In which, we present our proposed image enhancement framework predicated on internal exemplar homogeneous attribute within the scale and across the different resolutions. Both gradient level and image-level enhancement are employed to better preserve intensity changes and to ascertain robust performance [6]. These methods perform best for images which have pristine structure or thin cracks. These techniques are felicitous for reconstructing diminutive and non-textured region. Second category is predicated on texture synthesis in which textures are engendered for more immensely colossal image regions utilizing sample textures. Texture predicated algorithms fill in damaged or missed regions utilizing rest of the available information of image, i.e. they endeavor to match [3].

Fig.1 Image Inpainting Shows the level(HR,LR)
Fig. 1 Flowchart of the proposed internal exemplar-based image enhancement method. Given an input LR image with a mask indicating the missing region(s), the LR gradients are upsampled with inpainting embedded. The HR gradients, along with the inpainted LR image, are fed into an energy function to reconstruct the final HR output image [6].

![Flowchart of the proposed internal exemplar-based image enhancement method.](image)

Fig. 2: Exemplar based Inpainting flowchart[18]

C. INPAINTING TECHNIQUES

Image inpainting techniques are habituated to abstract scratches in photographs, rehabilitating damaged regions in paintings and abstracting unwanted objects in an image. The challenge of present inpainting algorithms is to reconstruct texture and structure information for immensely colossal and thick damaged areas. Sundry implements are available for renovating damaged old photographs. These implements require user intervention which need expertise in the software functioning. So, a technique is required that can automatically reconstructs the damaged part of an image and is achieved by the information from region other than damaged part, to make the final resulting image look consummate and plausible.

![Exemplar based Inpainting flowchart](image)

D. Patch Sparsity

To better address the quandaries of patch cull and patch inpainting, two novel concepts of patch sparsity of natural image, are proposed and applied to the exemplar-predicated inpainting algorithm.

1.4.1 Patch Structure Sparsity

1.4.2 Patch Sparse Representation

In which the novel patch priority predicated on the sparseness of the patch’s nonzero homogeneous attributes to its neighboring patches. It is based on the observation that a patch on the structure has sparser nonzero similarities with its neighboring patches are compared with the patch within the textured region. Compared with the priority defined on isophote, this definition gives the better distinguish the texture and structure, and be more robust to the orientation of the boundary of missing region[7].

1.4.2 Patch Sparse Representation

To inpaint a culled patch on the boundary of missing region, we utilize a sparse linear amalgamation of exemplars to infer the patch in a framework of representation. This linear amalgamation of patches are regularized by the sparseness prior (regularization) on the accumulation coefficients. It signifies that only very few exemplars contribute to the linear cumulation of patches with nonzero coefficients. This representation is called patch sparse representation. The patch sparse representation is withal constrained by the local patch consistency constraint [7].
E. CATEGORY OF IMAGE INPAINTING
Removing matter or large portion of an image then filling in the lost data is a crucial problem in numerous applications, such as image with special effects. There are two primary category of the work that focal point on lost image data improvement [1] as discussed below.

A. Structural inpainting
Structural inpainting used for the geometric approaches for filling in the missing information in the region which should be inpainted. These algorithm fixate on consistency of the geometric structure.

B. Textural inpainting
Structural inpainting methods have advantages and disadvantages. The main quandary is that all the structural inpainting methods are not able to recuperate texture. Texture has a perpetual pattern which denotes that a missing portion cannot be renovated by perpetuating the caliber lines into gap.

C. Combined structural and textural inpainting
Cumulated structural and textural inpainting approaches simultaneously endeavor to perform texture and structure filling in regions of missing patch information. That is why, the state of the art inpainting method endeavors to cumulate structural and textural inpainting [15].

D. Hybrid Inpainting
Natural images are confident of composite format and textures. The structures comprise of primary sketches (corners, edges) of an image and textures are regions with conventional/ homogenous feature statistics. A technique is consequently needed to handle intricate images containing both structures and textures [25].

Applications of Image Inpainting
- Their are some applications of Image Inpainting in various field:
 1. The initial application of digital image restoration within the engineering community was within the space of astronomical imaging.
 2. In the realm of medical imaging, image restoration has compete a really necessary role. Restoration has been used for filtering of Poisson distributed film-grain noise in chest X-rays and digital angiographic pictures.
 3. Another necessary application of restoration technique is to revive aging and deteriorated films.
 4. The increasing space of application for digital image restoration is that within the field of image and video writing. As techniques area unit developed to enhance writing potency, and cut back the bit rates of coded pictures abundant has been accomplished to develop ways in which of restoring coded pictures as a post-processing step to be performed once decompression.
 5. Digital image recovery has conjointly been wont to restore blurred X-ray pictures of craft wings to enhance aeronautic federal management procedures.

Methodologies
To accomplish both the image super-resolution and inpainting simultaneously. The proposed approach adopts internal exemplar kindred attributes in image level and gradient level where later enhancement results from both levels are alimined into a pre-defined cost function to instaurate the final output. Experimental results demonstrate that our method is capable of engendering visually plausible, natural looking results with clear edges and authentic textures. The rudimentary conception about the technique is to automatically fill in lost or missing components of an image utilizing information from the neighbouring area. The exemplar predicated Inpainting will engender good results for the sizably voluminous missing regions and additionally these algorithms can inpaint both structure and textured image as well.

II. LITERATURE SURVEY
The research work performed in this field by different researchers is presented as follows:

Zhang Hongying et. al. (2010) [1] An expeditious and adaptive method is proposed for consummating missing components caused by the abstraction of foreground or background elements from an image of natural view. Unlike most antecedent texture-synthesis predicated approaches utilizing extensive search to find the congruous texture, we synthesize the missing components by image patches drawn from horizontally located areas because of the vigorous horizontal orientation in natural scenes. On the other hand, here we present an adaptive scheme to calculate the size of the template window for capturing features of sundry scales. Number of examples are given to demonstrate the efficacy of our algorithm. Our results compare auspiciously to those obtained by subsisting techniques.

Dharm Singh et. al. (2013) [3] Three major quandaries have been found in the subsisting algorithms of image inpainting: Reconstruction of immensely colossal regions, Predilection of filling-in and Cull of best exemplars to synthesize the missing region. The proposed algorithm introduces two conceptions that deal with these quandaries preserving edge continuity along decreases the error. The algorithm gives the priority computation in order to get engender better edges in the omitted region for the better image and to reduce the transmission of errors in the resultant image with novel way to find the optimal exemplar has been proposed.

Ankur G Patel et. al. (2014) [5] Image Inpainting is used for modifying the digital image in such a way that the modifications/alterations are undetectable to an observer who has no conception about the pristine image. Image Inpainting is technique in which it mainly used to filling the region which are damaged from unwanted object by amassing the information from the neighboring pixels. In this paper, we provide an analysis of different Exemplar predicated techniques utilized for image Inpainting. This proposed work presents a comparative study of different Exemplar predicated image Inpainting techniques.
Yang Xian et. al. (2015) [6] Image enhancement aims to modify the images to achieve a better perception for the human visual system or a more felicitous representation for further analysis. Predicated on the different attributes of given input images, tasks vary, e.g., noise abstraction, deblurring, resolution enhancement, prognostication of missing pixels, etc. The latter two are conventionally referred to as image superresolution. There subsist perplexed circumstances where low-quality input images suffer from insufficient resolution with missing regions. In this paper, we propose a novel uniform framework to accomplish both image super-resolution and inpainting simultaneously. The proposed approach adopts internal exemplar homogeneous attributes in image level and gradient level where later enhancement results from both levels are vicuolated into a pre-defined cost function to recuperate the final output. Experimental results demonstrate that our method is capable of engendering visually plausible, naturallooking results with clear edges and authentic textures.

Pranali Dhabekar et. al. (2012) [7] This paper presents a novel and efficient exemplar-predicated inpainting algorithm through investigating the sparsity of natural image. The two main concepts of sparsity at the patch level are proposed for modeling the patch priority and representation, which are crucial steps for patch propagation in the exemplar-predicated inpainting method. The first, patch structure sparsity is designed to quantify the confidence of a patch located at the image structure by the sparseness of its nonzero homogeneous attributes to the neighboring patches.

Manoj S Ishi et. al. (2015) [10] In the modern world of digitalization peoples are endeavoring to preserve their recollections event in the format of pictures. Images are damages due to cracks, and it may possible that some unwanted person withal came in image. So instauration of this corrupted image becomes the compulsory for preserving this image. Inpainting technique is utilized to modify this type of image such that recuperated image having close resemblance with pristine image and prevalent observer will find arduousness for identifying distinction between damaged image and modified image. In this paper two algorithms of inpainting are coalesced. Exemplar predicated inpainting which used to abstract object with circumventing information and Progressive image inpainting predicated on wavelet transform which evaluate the energy of pixels are utilized for recuperating of image.

Ronak B Patel et al. (2015) [15] Image inpainting is the art of abstract object from image or filling in missing data in image utilizing the information from circumventing kenned region. The main objective of inpainting is Image inpainting is the art of abstract object from image or filling in missing data in image utilizing the information from circumventing kenned region. The main objective of inpainting is to recover of damaged pixel value and elimination of culled object from image. In this dissertation we discuss about criminiși predicated exemplar inpainting technique. Optimize time required to perform inpainting and quality amelioration in final image is main requisites for any technique.

Shivali Tyagi et. al. (2013) [18] This paper discusses abstracting objects from digital images and fills the aperture that is left behind. Here, we present a novel and efficacious algorithm that coalesces the advantages of these two approaches. We first note that exemplar-predicated texture synthesis contains the process required to replicate both texture and structure; the prosperity of structure propagation that highly dependent on the order in which the filling proceeds. The subsisting algorithms are cumulated to ameliorate the efficiency for finding the line sodality in culled region (like solid objects). Main focus is on data term and confidence term to find line sodality in culled region which is to be inpainted. The region filling is done from that line associated to other section in culled region.

Anamika Maurya et. al. (2014) [20] Author offer a elliptical summary of most helpful restoration models. Different types of image restoration techniques like wiener filter, inverse filter, regularised filter, Richardson –Lucy algorithmic rule, neural network approach, wavelet primarily based approach, blind deconvolution ar delineated and strength and weakness of every approach ar known.

Priyanka Rajesh Gulhane et. al.(2012) [23] Author aim to reconstruct the lost knowledge victimization correlation between the lost block and its neighbours. Removing a target object and filling the missing regions of a picture is that the key technology typically applied to image restoration. the fundamental plan is peer the missing block with the data propagating from the encompassing pixels. Here the aim is to peer the gap of missing knowledge during a kind that’s non-detectable by a normal observer, this system provides a way to revive broken region of a picture, such the image appearance complete and natural when restoration. Applications of this system embody the restoration of previous pictures and removal of superimposed text like dates, subtitles, or promotion.

Pooja Kaushik et. al. (2012) [24] The author compared the various image sweetening techniques by victimisation their quality parameters (MSE & PSNR) & planned a replacement erosion sweetening technique. this system provides higher result than alternative techniques and their PSNR price is high & MSE is low. The experimental results show that the planned sweetening technique provides higher results.

Kaushikkumar R. Patel et.al. (2015) [25] Inpainting withal kennd as retouching is the process by which we endeavor to fill in the damaged or missing portions of an image that it is unable for the person optically discerning the image to find the fault within the image. Digital Image In painting, a relatively puerile research area is an art of filling in the missing or corrupted regions in an image utilizing information from the neighboring pixels in a visually plausible manner, while renovating its unity. It is availingy apply for object reflection in digital photographs, image reconstruction, text abstraction, video renovation, special effects in movie are discussed in this topic . There are numbers of method utilized for image inpainting.

III. PROPOSED WORK
A. PROBLEM FORMULATION

1 There subsist perplexed circumstances where low-quality input images suffer from Insufficient resolution with missing regions.

All Rights Reserved © 2016 IJARECE
2. For diminutive scratch regions or diminutive regions to be inpainted such as PDE and texture synthesis predicated inpainting algorithms. It cannot fill the astronomically immense missing region and withal it cannot recuperate the texture pattern.
3. Image may get corrupted. Images are damages due to cracks, noise and it may possible that some unwanted person withal came in image.
4. They are withal destitute of in certain things. If we consider the size of object to recuperate, some of the techniques unable to engender the good result, because some of the techniques are designed for diminutive image gaps only. If we consummate the images with sizably voluminous gaps then it will give the result but the result quality will be impecunious and blurring effects additionally comes in act. Some of the techniques engender single resolution image result, to overcome that drawback multi resolution approach is proposed.
5. PDE predicated method is good if filling area is diminutive but if filling area is astronomically immense then this method take so long time and it will not engender good result. Texture synthesis predicated algorithm have difficulties in handling natural images as they are form of structure in form of edges. So these methods address only minuscule area of inpainting issues and these methods are not opportune for an immensely colossal object.

Semiautomatic and expeditious inpainting method is give result expeditious but not felicitous when filling area is in form of astronomically immense aperture as they lack specific, methods to in paint the edge regions. This technique give blur effect in result image.

Proposed work using the algorithm

Inpainting technique is utilized to modify this type of image such that recuperated image having close resemblance with pristine image and mundane observer will find arduousness for identifying distinction between damaged image and modified image. Exemplar predicated inpainting which used to abstract object with circumventing information and Progressive image inpainting predicated on wavelet transform which evaluate the energy of pixels are utilized for recuperating of image. A expeditious algorithm for filling unknown regions in an image utilizing the strategy of exemplar matching.

Wavelet transform is overcome by the contour let transform for better result. PSNR values are utilized in some techniques which quantified with the avail of number of components of images we engendered to consummate the image. The PSNR value is ratio of value decomposed image to value of the entire image which is calculated at the different caliber. This PSNR value gratifies the human visual system (HVS). After HVS is satiate the image.

IV. RESULTS AND ANALYSIS

We have experimented with the leena image and comparing with PSNR. This algorithm is programmed by matlab2012Ra.

![Fig. 5 when apply the mask on the image (PSNR value 16.830193)](image-url)
PSNR is most commonly used to quantify the quality of reconstruction of lossy compression codecs (e.g., for image compression). The signal in this case is the pristine data, and the noise is the error introduced by compression. When comparing compression codecs, PSNR is an indicator to human perception of reconstruction quality. Albeit a higher PSNR generally betokens that the recovery is of higher quality, in some cases it may not. One has to be prodigiously punctilious with the range of validity of this metrical; it is only once and for all valid when it is utilized to compare results from the same codec (or codec type) and same content. This method performs on Image inpainting techniques designed for the restoration of small scratches, and, in instances in which larger objects are removed, it gives the results in terms of both perceptual quality and computational efficiency. In command window it shows the number of Iteration with the PSNR Value.

Fig. 6 PSNR value 21.634655

Measures of image quality
Comparing renovation results requires a quantification of image quality. Two commonly used measures the both Mean-Squared Error and Peak Signal-to-Noise Ratio.

Fig.7 PSNR value 22.918178

Fig. 8 the PSNR value 23.604909

PSNR is quantified in decibels (dB). The PSNR measure is withal not ideal, but is in prevalence use. Its main failing is that the signal vigor is estimated as, rather than the genuine signal vigor for the image. PSNR is a good measure for comparing renovation results for the similar image, but between-image comparisons of PSNR are nugatory. One image with 20 dB PSNR may look better as comparison the another image with 30 dB PSNR.
The program is that the largest the PSNR, the better degraded image has been reconstructed to match the pristine image and the better the remodel the algorithm. This would occur because we optate to minimize the MSE between images with reverence the maximum signal value of the image.

V. CONCLUSION AND FUTURE SCOPE

Future works will certainly involve extensions to current algorithm to handle accurate propagation of curved structures in images. Also investigation of efficient searching scheme and on the automatic discovery of component weights for different types of images as well as removing objects from video, which promise to impose totally new set of challenges. On the other hand, we review the techniques of image Inpainting. We provided the concept and a description of the different Inpainting.

(i) Extension to 3-D: - For the last few years, attempts have been made to extend the in-painting techniques from two dimensions (2-D) to three dimensions (3-D). This modified methodology would help in the restoration of historical artifacts and damaged monuments. This is because the objects that are symmetrical in three dimensions (3-D) may not appear symmetric in their 2-D projection / image plane. However, extensive research is still needed in this direction for the results to be visually pleasing.

(ii) In-painting for high resolution images:- Reconstruction/In-painting of high resolution images is still an issue of concern. Dealing with high resolution images, the main issue for the inside-painting techniques.

(iii) Using Video In-painting: -Video In-painting remains the challenging and a crucial task as the arbitrary camera kinetics, tracking moving objects in a video, and variations in illumination conditions remain conundrums to be solved and hence perplex the inside-painting performance.

VI. REFERENCES

