
ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 8, August 2016

2172
All Rights Reserved © 2016 IJARECE

Impact of Aspect-oriented Programming on Cross cutting

Metrics using Breshman Technique for Homogeneity

Quotient

Aarti Hans

ABSTRACT

Aspect-oriented is new programming approach

to develop software. There are various existing

approaches like modular and object oriented but

these approaches suffer from limitation in

properly separating crosscutting concerns.

Examples of cross cutting concerns are caching,

tracing, logging, security, resource pooling,

synchronization, exception handling etc. This

code must be properly encapsulated as well as

must be scattered throughout the code. Through

Aspect-oriented system tangling of code will be

reduced which makes it easier to understand

core functionality.We will use the Breshman line

technique to reduce the complexity of code.

However, the cohesion measure did not behave

in a way that could be correlated to the actual

changes performed on the code. A closer

analysis showed that moving and merging of

functionality could result in either an increase or

a decrease in cohesion.

Keywords: AOSD, software estimation,

crosscutting, breshman line.

I.INTRODUCTION

Aspect-oriented software development (AOSD)

is a programming paradigm that addresses

crosscutting concerns: features of a software

system that are hard to isolate, and whose

implementation is spread across many different

modules. Well-known examples include

logging, persistence, and error handling. Aspect-

oriented programming captures such

crosscutting behavior in a new modularization

unit, the aspect, and offers code generation

facilities to weave aspect code into the rest of

the system at the appropriate places. Aspect

mining is an upcoming research direction aimed

at finding crosscutting concerns in existing, non-

aspect oriented code. Once these concerns have

been identified, they can be used for program

understanding or refactoring purposes, for

example by integrating aspect mining techniques

into the software development tool suite.

1. Crosscutting metrics

Most of the crosscutting concerns manifest in

early development artifacts, such as

requirements descriptions [3] and architectural

models due to their widely scoped influence in

software decompositions. They can be observed

in every kind of requirements and design

representations, such as use cases and

component models. Over the last years, aspect-

oriented software development (AOSD) has

emerged with the goal of supporting improved

modularity and stability of crosscutting concerns

throughout the software lifecycle. However, the

use of aspect oriented decompositions cannot be

straightforwardly applied without proper

assessment mechanisms for early software

development stages. This became more evident

according to recent empirical studies of AOSD

based on source-code analysis (e.g.) First, not all

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 8, August 2016

2173
All Rights Reserved © 2016 IJARECE

types of crosscutting concerns were found to be

harmful to design stability.

2. Bresenham’s line

Even with today‟s achievements in graphics

technology, the resolution of computer graphics

systems will never reach that of the real world.

A true real line can never be drawn on a laser

printer or CRT screen. There is no method of

accurately printing all of the points on the

continuous line described by the equation y= mx

+ b. Similarly, circles, ellipses and other

geometrical shapes cannot truly be implemented

by their theoretical definitions because the

graphics system itself is discrete, not real or

continuous. For that reason, there has been a

tremendous amount of research and

development in the area of discrete or raster

mathematics. Many algorithms have been

developed which „„map‟‟ real-world images into

the discrete space of a raster device.

Bresenham‟s line algorithm (and its derivatives)

is one of the most commonly used algorithms

today for describing a line on a raster device.

II.PROBLEM STATEMENT

The aim of the paper is to provide an

experimental analysis over current testing

methods for aspect-oriented software.

The current testing methods are useful in the

sense that it points out strengths and weaknesses

with different approaches by comparison. This

information may help testers decide on how to

test aspect-oriented software. Furthermore, an

overview can point out new research areas as

well as limitations of current research.

Research in testing of aspect-oriented software

is still going on. Some researchers (e.g., Zhou et

al., 2004) are proposing only a first step towards

a comprehensive approach for testing aspect-

oriented software. We also get some testing

approaches for aspect-oriented program (e.g.,

Anbalagan&Xie, 2006) which only highlights

some specific features. Aspect-oriented software

introduced some new kinds of faults which we

did not see in procedural program and object-

oriented program. There is no coherent overview

of the strengths and weaknesses of different test

methods which can help testers and researchers

to get idea about the current methods. There are

some surveys, which discuss the effectiveness of

some of the test methods. The effectiveness of

the test methods is examined by their capability

of fault finding. But until now, more test

methods for aspects-oriented software are

proposed.

III. SYSTEM MODEL

THE CONCEPTUAL COHENSION OF

CLASSES

In order to define and compute the C3 metric,

we introduce a graph-based system

representation similar to those used to compute

other cohesion metrics. We consider an OO

system as a set of classes C = {c1; c2 ... cn}. The

total number of classes in the system Cisn= |C|.

A class has a set of methods. For each class c €

C, M(c) = {m1................; mk} is the set of

methods of class c.

An OO system C is represented as a set of

connected graphs GC = {G1;...;Gn} with Gi

representing class ci. Each class ci € C is

represented by a graph Gi € GC such that Gi =

(Vi; Ei), where Vi = M(ci) is a set of vertices

corresponding to the methods in class q, and Ei

€ Vi x Vi is a set of weighted edges that connect

pairs of methods from the class.

DEFINITION 1

CONCEPTUALSIMILARITY BETWEEN

METHODS (CSM).

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 8, August 2016

2174
All Rights Reserved © 2016 IJARECE

For every class ci 2 C, all of the edges in Ei are

weighted. For each edge (mk ;mj) € Ei, we

define the weight of that edge CSM(mk ;mj) as

the conceptual similarity between the methods

mk and mj The conceptual similarity between

two methods mkand mj, that is, CSM(mk;mj), is

computed as the cosine between the vectors

corresponding to mkand mjin the semantic space

constructed by the metrices method.

CSM (mk, mj) = vmktvmj / |vmk|2 |vmj|2 Where

vmkand vmjare the vectors corresponding to the

mk; mj 2 M (Ci) methods, T denotes the

transpose, and vmkj 2 is the length of the vector.

For each class c 2 C, we have a maximum of N

= C2 distinct edges between different nodes,

where n = |Mc)|. With this system

representation, we define a set of measures that

approximate the cohesion of a class in an OO

software system by measuring the degree to

which the methods in a class are related

conceptually.

DEFINITION 2

(AVERAGE CONCEPTUAL SIMILARITY

OF METHODS IN A CLASS (ACSM)

The ACSM c € C is ACSM(c) = 1/N x ΣCSM

(mi ,mj) Where (mi; mj) € E, i ≠ j, mi , mj€

M(c), and N is the number of distinct edges in

G, as defined in Definition 1.

DEFINITION 3 (C3)

For a class c € C, the conceptual cohesion of,

C3(c) is defined as follows C3(c) = {ACSM(c),

if ACSM(c)>0, Based on the above definitions,

C3 (c) € [0, 1] V c € C. If a class c 2 C is

cohesive, then C3(c) should be closer to one,

meaning that all methods in the class are

strongly related conceptually with each other

(that is, the CSM for each pair of methods is

close to one).

IV. PROPOSED IMPLEMENTATION

In our research, we will focus on the testing of

Aspect oriented programs with crosscutting state

based and Breshhman line. Particularly for

testing we will use MATLAB tool. In our

research we will focus on faultsfinding for

Aspect Oriented Programs with help offlow

diagram based on state base of crosscutting.

Then testsequences will be generated based on

the attributesavailable in input Aspect oriented

code. Testsequences will also be based on

interaction betweenaspects and primary models,

and verifies theexecution of the selected

sequences.

In our researchwe will propose Breshhman line

and crosscutting metrics, which can detect

incorrect advice type errors, weak pointcuts, and

incorrect Precedence errors. Sequences will

begenerated by proposed scheme automatically

whiledetection of faults in Aspect Oriented

codes whichwill validate the coming results.

The major steps of our method are described in

thefollowing:

1. Building an aspect oriented code with

theseparation of crosscutting concerns.

2. Building state based model of the primary

concern

3. Testing the primary concern separately.

4. Integrating an aspect. As long as there are

aspectswhich are not integrated

a. Building aspect model and weave it into

primarymodel.

b. Generating the test sequences affected or

createdby the aspect.

c. Testing the primary concern with the

integratedaspect and executing it.

d. If there is no problem encountered, return to

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 8, August 2016

2175
All Rights Reserved © 2016 IJARECE

Step 4.Testing entirely the primary concern

includingaspects.

5. End.

4.1 Bresenham’s line

We can now write an outline of the complete

algorithm.

1. check input line up to endpoints, (X1,Y1) and

(X2, Y2)

2. Calculate constants:

Dx = X2 – X1

Dy = Y2 – Y1

2Dy

2Dy – Dx

3. Assign value to the starting parameters:

k = 0

p0 = 2Dy – Dx

4. Plot the value at ((X1,Y1)

5. For each integer x-coordinate, xk, along the

line if pk< 0 plot pixel at (xk + 1, yk)

pk+1 = pk + 2Dy (note that 2Dy is a pre-

computed constant)

else plot pixel at (xk + 1, yk + 1)

pk+1 = pk + 2Dy – 2Dx

(note that 2Dy – 2Dx is a pre-computed

constant)

increment k

while x k < X2

WORK FLOW

Start =>Aspect code => MATLAB code => use

crosscutting matrices & Breshman line

code=>Reduce visible fault => Testing outcome

on command window => Test sequence

generation => Finding faults=> Correcting

faults=> Get graph result of crosscutting

matrices.

V.RESULT

Aspect_Based_Features =

core: 0.2882

 c1: 1.0457

 c2: 0.9472

c1_h: 0.4404

c2_h: 0.3563

f: 0.1400

--

D:\M.tech_THESIS\MATLAB_CSE&

ECE_PROJECT\AOSD_ITM_AARTI_HANS\

AOSD -Arti_ITM_21.11.2015...

D:\M.tech_THESIS\MATLAB_CSE&

ECE_PROJECT\AOSD_ITM_AARTI_HANS\

AOSD -Arti_ITM_21.11.2015\C1.m...

D:\M.tech_THESIS\MATLAB_CSE&

ECE_PROJECT\AOSD_ITM_AARTI_HANS\

AOSD -Arti_ITM_21.11.2015\C1_h.m...

D:\M.tech_THESIS\MATLAB_CSE&

ECE_PROJECT\AOSD_ITM_AARTI_HANS\

AOSD -Arti_ITM_21.11.2015\C2.m...

D:\M.tech_THESIS\MATLAB_CSE&

ECE_PROJECT\AOSD_ITM_AARTI_HANS\

AOSD -Arti_ITM_21.11.2015\C2_h.m...

D:\M.tech_THESIS\MATLAB_CSE&

ECE_PROJECT\AOSD_ITM_AARTI_HANS\

AOSD -Arti_ITM_21.11.2015\F.m...

D:\M.tech_THESIS\MATLAB_CSE&

ECE_PROJECT\AOSD_ITM_AARTI_HANS\

AOSD -

Arti_ITM_21.11.2015\bresenham_line.m...

D:\M.tech_THESIS\MATLAB_CSE&

ECE_PROJECT\AOSD_ITM_AARTI_HANS\

AOSD -Arti_ITM_21.11.2015\codesize.m...

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 8, August 2016

2176
All Rights Reserved © 2016 IJARECE

D:\M.tech_THESIS\MATLAB_CSE&

ECE_PROJECT\AOSD_ITM_AARTI_HANS\

AOSD -Arti_ITM_21.11.2015\main.m...

D:\M.tech_THESIS\MATLAB_CSE&

ECE_PROJECT\AOSD_ITM_AARTI_HANS\

AOSD -Arti_ITM_21.11.2015\sloc.m...

D:\M.tech_THESIS\MATLAB_CSE&

ECE_PROJECT\AOSD_ITM_AARTI_HANS\

AOSD -

Arti_ITM_21.11.2015\viewClassTree.m...

Result 1: Path of the program file

--

Total files: 10

Total lines: 553 (avg. 55 per file)

code: 396 (72%, avg. 40 per file)

comment: 65 (12%, avg. 7 per file)

QoC: 92 (17%, avg. 9 per file)

Total characters: 14318 (avg. 26 per line, 1432

per file)

code: 8565 (60%, avg. 22 per code line,

approx.)

comment: 5856 (41%, avg. 90 per comment

line, approx.)

Result 2: Total reviews of the code

Figure 1: HQ value for line of code

improvement.

In above figure a feature of a program P, we

define the following metrics:

FCD (Feature Crosscutting Degree)

In Corresponds to the number of classes that are

crosscut by all pieces of advice in a feature and

those crosscut by the ITDs.

FCD(f,P)=count(union(ccclasses(method

ITDs(aspects (f))),

 Ccclasses (constructor ITDs (aspects (f))),

 Ccclasses (field ITDs (aspects (f))),

 sclasses (shadows (pointcuts (advices

(aspects (f))),P))))

ACD (Advice Crosscutting Degree)

In Corresponds to the number of classes that are

crosscut exclusively by the pieces of advice in a

feature.

ACD(f,P)=

count(sclasses(shadows(pointcuts(advices(aspec

ts(f))),P))) HQ. We define Homogeneity

Quotient as the division of the advice

crosscutting degree (ACD) by the feature

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 8, August 2016

2177
All Rights Reserved © 2016 IJARECE

crosscutting degree (FCD): HQ(f,P) =

ACD(f,P)/FCD(f,P) if FCD(f,P)!=0 = 0

otherwise

PHQ(Program Homogeneity Quotient)

It corresponds to the summation of the

homogeneity quotients for all the features in a

program, divided by the number of features

NOF. PHQ(P) = sum(foreach(P,

λg.HQ(g,P)))/NOF(P)

VI.CONCLUSION

Assessing the quality of software is an essential

process of software engineering. Theproblem of

separation of concerns fueled the growth of the

aspect-oriented paradigm.This new paradigm

raises questions about quality, due to its close

relations withobject-oriented programming. It is

apparent from this paper that implementation of

Designing an application in aspect Matlab

framework is much sorted out in comparison to

object-oriented concepts. As it separates out the

functional code and non-functional code, so the

complexity reduces of the software

development.

We plan to extend our set of metrics to address

issues such as cohesion and coupling for

features. These extended metrics could help

identify opportunities for feature refactoring.

Such a study has been beyond the scope of our

work to date, although we hope to do one in the

future. In the meantime, we have developed one

initial measure of the degree to which applying

AOP techniques can simplify an application.

REFERANCES

[1] EsubalewAlemneh “Current States of Aspect

Oriented Programming Metrics” International

Journal of Science and Research (IJSR)ISSN

(Online): 2319-7064 Volume 3 Issue 1, January

2014

www.ijsr.net

[2] Roberto E. Lopez-Herrejon “Towards

Crosscutting Metrics for Aspect-Based

Features” Computing Laboratory

Oxford University

Oxford, England, OX1 3QD

rlopez@comlab.ox.ac.uk

[3] Zhou, Yuewei, Ziv, Hadar& Richardson,

Debra (2004), “Towards A Practical Approach

to Test Aspect-Oriented Software”. Workshops

on Testing of Component-Based Systems

(TECOS ... GI 2004 P-58, 1-16 (2004)

[4] Parizi, Reza Meimandi&Ghani, Abdul Azim

(2007), “A Survey on Aspect-Oriented Testing

Approaches”, Fifth International Conference on

Computational Science and Applications.

[5] Zhao, J. “Towards a Metrics Suite for

Aspect-Oriented Software”. Technical-Report

SE-136-25, Information Processing Society of

Japan (IPSJ), March 2002.

[6] Mehner K., “On using Metrics in the

Evaluation of Aspect-Oriented Programs and

Designs”, 2005.

[7] Bartsch, M., Harrison, R, “An Evaluation of

Coupling Measures for AspectJ”, LATE

Workshop AOSD (2006).

[8] C. Sant'Anna, Alessandro Garcia, Christina

Chavez, Carlos Lucena& Arndt von Staa, “On

the Reuse and Maintenance of Aspect-Oriented

Software: An Assessment Framework”. XXIII

Brazilian Symposium on Software Engineering,

Manaus, Brazil, October 2003.

[9] Jean-François Gélinas, MouradBadri, Linda

Badri, “A Cohesion Measure for Aspects”,

http://www.ijsr.net/
mailto:rlopez@comlab.ox.ac.uk

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 8, August 2016

2178
All Rights Reserved © 2016 IJARECE

Journal Of Object Technology, Vol. 5, No. 7, pp

97-114, September- October 2006.

[10] Apel Sven, Batory Don, Rosenmuller

Marko. “On the Structure of Crosscutting

Concerns:Using Aspects or

Collaborations?”, 2007

