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Abstract— With an adaptive figure-ground segmentation 

algorithm that extract foreground objects in a generic 

environment. In this paper, initially a background mask is 

assigned and background prior is defined. Then by progressive 

patch merging several soft-label partitions are generated from 

different foreground priors. A foreground probability map is 

produced by joining (fusing) these partitions. By binarizing the 

probability map via threshold sweeping, multiple hard-label 

candidates will be created.  The best candidate is determined 

by a score function that evaluates the segmentation quality. 

Generates multiple hypotheses segmentations from different 

evaluation scores. From the multiple hypotheses 

segmentations, the hypothesis with maximum local stability is 

propagated as the new background prior, and the segmentation 

process is repeated until convergence. The final segmentation 

is then automatically obtained by similarity voting from the 

multiple hypotheses. Experiments indicate that our method 

performs at or above the current state-of-the-art on several 

data sets, with particular success on challenging scenes that 

contain irregular or multiple-connected foregrounds. In 

addition, this improvement in accuracy is achieved with low 

computational cost. 

 

Index Terms— Adaptive figure-ground segmentation, 

probability map, multiple hypotheses fusion, similarity voting.  

 

I. INTRODUCTION 

   

Figure-Ground segmentation plays a key role in many 

vision applications. By producing a binary segmentation of 

the image, foreground regions are separated from their 

background. Popular approaches include interactive graph 

cut [2],[3], random walk, geodesic, information theory, 

variational solutions. Due to the broad diversity of visual cues 

in an image, automatic segmentation [1] is extremely 

difficult in a generic conditions. Interactive approaches are 

better to provide a priori knowledge to guide segmentation. 

Bounding box assignment and seed positioning are two 

representative methods. Multiple hypotheses and classifier 

fusion are the ideas applied to segmentation studies. Current 

state-of-the-art interactive segmentation methods suffer from 

restrictive assumptions about latent distributions, an inability 
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to treat complicated scene topologies, or an inefficient 

similarity measure.  

In this paper, an iterative adaptive figure-ground 

classification method gives promising solutions in a broadly 

applicable environment. The pipeline of the framework is 

illustrated in Fig: 1. Mask box can provide good statistical 

information about the background and image patches are 

formed using an adaptive mean-shift algorithm. By 

generating a large amount of hypotheses through an iterated 

background prior propagation routine, foreground extraction 

is achieved. The final result can be obtained by fusing most 

promising hypotheses. The algorithm  obtains good result for 

challenging scenes in both segmentation accuracy and 

execution efficiency. This method is not sensitive to difficult 

scene topology or loose bounding box and reliably treats 

multi-connected, multi-hole foregrounds. The advantage of 

our method is that the spatial smoothness term is removed in 

popular conditional random fields approaches and hence no 

need of additional learning algorithm for tuning a 

smoothness parameter. 

 The rest of the paper is organized as follows. Section II 

presents related work. Section III presents our enhanced 

adaptive figure-ground classification framework. Section IV 

gives experimental results on several image datasets. Section 

V concludes the paper. 

  

II. RELATED WORK 

The four major aspects of figure-ground segmentation which 

are related to our work are the definition of prior knowledge, 

similarity measures, parameter tuning and evaluation of 

good hypotheses. Prior knowledge can provide information 

about either the foreground or background or both and it also 

includes bounding boxes or seed points to help define hard or 

soft constraints. Priors can propagate throughout the 

segmentation process. 

 Similarity measures are defined based on appearance cues 

like color, shape, texture and gradient. Besides traditional 

Euclidean distance, similarity measures are based on 

statistics or information theory. 

 Regarding parameter tuning, a common practice is to learn 

the parameters via an energy minimization framework using 

training data and supervised learning. The assumption exists 

a parameter setting to represent the images in the training 

set. This assumption is not necessarily true and bears the risk 

of training set bias and the generalization performance is 

bad. Adaptively set for each image prefers to find parameters. 
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 Finally, it is difficult to segment all types of natural images 

in a single criterion that contain a broad variety of visual 

patterns. So, in recent works, good evaluation strategies have 

developed to judge and combine multiple candidates [9],[10].   

 In this paper, by merging good hypotheses, the foreground 

will extracts. Our method is distinct from previous 

multi-hypothesis approaches in the following two aspects: 

First, in the previous work, multiple hypotheses will 

generates by varying segmentation parameters or employing 

different over-segmentation algorithms and results in 

multiple K-way segmentations.  In our task foreground 

extraction is a binary segmentation task. By following 

multiple evaluation, a novel method is proposed to generate 

binary hypotheses using a tree-structured likelihood 

propagation. Since it is unknown which part of the bounding 

box contains the foreground, by initializing the tree with 

various regions as the foreground to generate candidate 

segmentations. Second, due to lack of effective mechanisms 

to choose a better one from multiple hypotheses in general 

environment from the most previous approaches and can 

only resort to some extra learning process. In our method, the 

idea of similarity voting is used that does not require learning 

process to fuse soft-segmentation into a probability map [5] 

and hard-segmentation into a final segmentation. 

 In this paper, the presence of new method improves over the 

original in the following aspects: 1) Soft label schemes are 

used based on foreground likelihoods that leads to significant 

improvement in the segmentation quality of fine details. 2) 

An iterative scheme is introduced to propagate the 

background prior that increases the accuracy of the 

segmentation. 3) A novel score function is defined by using 

maximally stable external regions (MSER) for goodness 

evaluation and background prior propagation that effectively 

prevent over-propagation of the background and better 

handles loose bounding boxes. 4) Probability map [5] is 

generated by extending the similarity voting and hypotheses 

set selection that contains a robust classifier fusion from 

multiple hypotheses. 

 

III. ENHANCED ADAPTIVE FIGURE-GROUND 

CLASSIFICATION FRAMEWORK 

In this section, we propose an enhanced adaptive 

figure-ground classification framework with background 

prior propagation. Our segmentation algorithms is based on 

fusing multiple candidate segmentations and is guided by 

two underlying principles: 1) Candidates are generated by 

voting or fusion of multiple candidates often has a better 

chance than optimization of a single score function in 

classification tasks. 2) The hypotheses set with higher intra 

similarity, to yield a result that satisfies more participants 

than by regarding the fusion strategy. The fusion strategy of 

multiple candidate segmentations denotes as similarity 

voting. Similarity voting plays an important role throughout 

the algorithm. 

A. Algorithm Overview  

The pipeline of our figure-ground segmentation algorithm 

is shown in fig 1. Our algorithm consists of two main stages: 

1) hypothesis segmentation generation, and 2) similarity 

voting & fusion. In the first stage, the user box indicates the 

initial background , and a large number of candidate 

segmentations are created, best hypothesis segmentations are 

selected from the set of candidate segmentations. The new 

background prior is defined by using one of the hypotheses 

and several hypotheses sets are formed by repeating the 

segmentation process. In the second stage, the best 

hypothesis set is automatically selected by comparing the 

intra similarities of the set, and the final segmentation is 

formed by fusing the corresponding hypotheses. 

B. Bounding Box Assignment 

 Our algorithm is based on a user-specified mask box that 

defines the initial background prior, as in previous 

approaches. Either side of the box can be defined as the 

background mask that contains only background pixels. The 

complement of the background mask makes the foreground 

mask, that contains both foreground and background 

elements. The mask box can flexibly handle different cases of 

multiply connected foregrounds. 

C. Image Patches by Adaptive Mean-Shift 

The segmentation [4] is defined by grouping the 

non-overlapping regions have become popular due to its 

advantages in information transfer and computational 

efficiency. We choose the mean-shift algorithm to do 

over-segmentation since mean-shift patches are better 

described statistically in comparison to other super-pixel 

generators. To remain consistent with the underlying 

probabilistic framework of the mean-shift algorithm, we 

model each mean-shift patch as a multivariate normal 

distribution. A feature vector in the 5D joint color-spatial 

feature space is given by  

 

fx,y = (L(x, y), a(x, y), b(x, y), x,y)         (1) 

           

where (x, y) are the 2D pixel coordinates and (L, a, b) are 

the pixel values in the Lab color space. The Lab color space is 

used because it is better modeled by a normal distribution in 

comparison to RGB. Finally, we treat the 3D color features 

and the 2D spatial features identically, and hence distances 

defined over the feature space, compare both visual similarity 

and spatial adjacency of the patches. 

 

 
Fig.1. The Pipeline of enhanced figure-ground classification with background 

prior propagation (EFG-BPP): (a) Original image with box mask(Section 

III-B),and image patches from adaptive mean-shift(Section III-C); The inputs 

of the ―hypothesis segmentation generation‖ are the image patches. (b) the box 

mask helps define the initial background prior; (c) Different foreground priors 

generate multiple soft-label partitions (Section III-E); (d) all soft-labels are 

combined into one foreground probability map (Section III-F); (e) Thresholding 

the probability map forms a set of hard-label candidates (Section III-G); (f) A 

set of hypotheses is selected using evaluation by various score functions 
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(Section III-G). The lower-right hypothesis of (f) is the result using the MSER 

score function, and is propagated as the background prior for the next 

segmentation round (section III-H). The inputs of the ―similarity voting & 

fusion‖ block are multiple hypothesis set. (g) The winning hypothesis set is 

selected using similarity voting; (h) The final segmentation is obtained by 

fusing the hypothesis set (Section III-I). 

 

D. Similarity Measure Between Patches  

In the next stage of the segmentation pipeline, patches are 

gradually assigned to the current background or foreground 

regions, based on their distances to each region. A region will 

represent as the set of its patches. Hence, we must first define 

a suitable distance measure between two patches, and 

between a patch and a region, i.e., a set of patches. We model 

each mean-shift patch pi as a multivariate normal 

distribution  N(µ1,∑1) in the 5D feature space defined in the 

above equation. The mean vector µ1 and the covariance 

matrix  ∑1 are estimated by patch statistics. All patches are 

eroded with a radius-1 disk structuring element to avoid 

border effects. In this paper, we consider two distance 

measures. The first is the minimum KL-divergence between 

two patches,  

  

    (2) 

 

where N1 and N2 are two Gaussians, N(µ1,∑1) and N(µ2,∑2) 

and the KL-divergence between two d-dimensional 

Gaussians. 

 

is a symmetrized version of the KL divergence. The 

graphical representation of KL-divergence in 5D is shown 

below 

 

 
 

E. Soft-Label Partitions  

With the patch distances defined in Section III-D we build 

our foreground extraction algorithm. In light of the 

assumption that the pre-assigned mask provides sufficient 

background statistics, we first initialize the background and 

foreground priors, and then gradually refine the 

segmentation by merging patches into the foreground.The 

first step is to obtain the background prior B by selecting 

patches overlapped with the background mask. Next, patches 

are selected for the initial foreground prior [7],[8] F if the 

distance from patch pi to the background prior B is greater 

than a threshold Dt, 

 

            (4) 

 

To start  the initial foreground set F, first, all unlabeled 

patches are sorted in descending order by their distances 

from the background prior B. Patches are then labeled in turn 

by comparing them with the current background and 

foreground sets, 

 

        (5) 

F. Foreground Probability Map  

By fusing all soft-label partitions to build the foreground 

probability map. The fusion occurs based on the idea of 

similarity voting. Fi denotes the ith soft-label partition from 

the previous stage, andFi
m denotes the likelihood value of the 

mth pixel in Fi , where take the likelihood pixels of their 

corresponding patches. The similarity between two soft-label 

partitions Fi and Fj can be denoted as 

 

(6) 

       

Where M is the total number of pixels, and sign(x) is 0 when 

x=0 and 1 when Fi and  Fj are hard-label partitions. 

G. Hypotheses Segmentation set  

The segmentation procedure in the previous section 

generates a large set of candidate segmentations by varying 

the threshold Dt. Taking into account the fact that 

perceptually meaningful segmentations may correspond to 

different cost functions, we generate multiple segmentation 

hypotheses by selecting the best candidate segmentations 

according to several evaluation scores. In particular, we 

consider three score functions that maximize the global 

distance between background and foreground patches, using 

the distance measure D: sum-cut [2],[3], average-cut [2],[3] 

and maxmin-cut [2],[3] (abbreviated as s-cut, a-cut, and 

m-cut). Other score functions could also be easily 

incorporated to enclose any available prior knowledge.The 

sum-cut [2],[3]score function is defined as the sum of the 

distances D(f, B) from each foreground patch f to the 

background set, i.e. the selected threshold is given by 

 

   (7) 

 

Where F(Dt) and B(Dt) are respectively the foreground and 

background sets in the final segmentation map computed 

from the threshold Dt .Taking the average instead of the sum 

yields the average-cut score function 

 

 (8)  
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Finally, the maxmin-cut [2],[3] score maximizes the 

minimum distance between foreground and background 

patches, 

 

     (9)  

 

H. Iterated Background Prior Propagation  

A set of hypothesis segmentations are resulted in the section 

III-G. Background prior propagation (BPP) [6] can be 

defined as the one of the background region of these 

segmentations that can be used as the background prior for a 

new segmentation. For BPP, the use of background from the 

MSER segmentation because of its favourable properties 

mentioned in Section III-G. The process iteratively continues 

until the background prior reaches a stable point. The 

convergence of BPP is guaranteed because image patches can 

only be added to the background prior in each segmentation. 

To prevent the over-propagation of the background, MSER 

contributes the bigger foreground regions.  

I. Hypotheses Selection and Fusion  

Given the multiple hypotheses, we borrow the idea of 

classifier fusion to automatically obtain the final 

segmentation. Two methods were proposed for determining 

the final segmentation by pooling over all the hypotheses. 

The first scheme, which we denote as similarity voting, is 

based on the assumption that a good solution is likely to be 

selected by different score functions. In the case of multiple 

winners, we select the one most similar to the other 

hypotheses. The similarity between two binary 

segmentations H1 and H2 is defined as the Jaccard index, 

 

         (10) 

 

 The second scheme, which we denote as probability map 

that computes the final foreground map F by a simple 

pixel-wise majority vote, 

 

   (11)                                      

 

IV. EXPERIMENTAL RESULTS 

In this section, we evaluate our algorithm. Experiments were 

run on a notebook computer with an Intel core-i7 CPU 

2.7Ghz processor and 4GB RAM. Our algorithm is 

implemented in MATLAB and is available online3. 

A. Evaluation of Segmentation Results   

In this experiment, 4 datasets were considered. The first two 

datasets are from the Weizmann evaluation dataset 

containing 100 1-obj images and 100 2-obj images. We also 

use the IVRG dataset(1000 images) and the grab cut dataset 

(50 images). 

Enhanced figure-ground classification uses soft-label 

partitions as background prior propagation as EFG-BPP and 

the performance of hard-label partitions tests and denotes as 

EFG-BPP (hard-label).The user assigns and fix the initial 

mask box by comparing the methods.  

EFG-BPP successfully labels background holes and multiply 

connected components, and identifies many details missed in 

the manual-made truths. EFG-BPP exhibits better 

performance, by segmenting complicated foreground and 

background shapes. The result of the first iteration is 

sufficiently good, even in the absence of background prior 

propagation. By employing background prior propagation 

and automatic hypotheses selection the result becomes better. 

Similarity comparison plays an important role in  hypothesis 

selection. Finally, all hard-label candidates forms an upper 

bounds for the figure-ground classification method and the 

foreground map is closest to the ground truth in all 

hard-label. 

Fig.2 Weizmann examples. Rows 1-3 are 1-obj examples. Rows 4-8 are 2-obj 

examples. The EFG-BPP result is equally good as the user selection for rows 

1,2,4,6 & 7; and slightly worse on the remaining rows. The outside of the blue 

boxes or the inside of the red boxes define the background masks. 

 

Fig.3 IVRG images. Top: image & mask; middle: grabcut results; bottom: 

EFG-BPP results. 

 

Fig:2 displays some example segmentations from the 

Weizmann dataset. Our enhanced f-g classification 

successfully labels background holes and multiply connected 

components. It even identifies many details missed in the 

manual-made truths (rows 1, 2, 4, 6, 7 of Fig: 2). Fig: 3 shows 

some example segmentations from the IVRG dataset. Our 

method better segments foregrounds with strongly irregular 

contours, compared to grab cut. The performance on each 

image is evaluated using F-measure, F=2PR/(P+R), where P 

and R are the  precision and recall values. Table 1 reports the 

95% confidence intervals of the average F-measure on each 

of the 4 datasets. First, looking at the single hypothesis 

segmentations produced by each of the four score functions 

and 2 distances, we note that there is no clear best score 
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function or distance measure for all scenarios. For example, 

s-cut is best for Weizmann 1-obj, but does poorly on 

Weizmann 2-obj.The last row of Table I shows the results of 

several reference algorithms. EFG-BPP performs slightly 

better than the state-of-the-art techniques for single  

connected foregrounds (Weizmann 1-obj), and                    

outperforms the state-of-the-art on multiple connected 

foregrounds (Weizmann 2-obj). 

  

 

 

TABLE I  

F-MEASURES ON FOUR IMAGE DATASETS.BOLD INDICATES BEST ACCURACY AMONG ALL METHODS, 

EXCLUDING USER-SELECT 

  

B. Evaluation of Soft and Hard Label Schemes 

The soft-label scheme performs better than the hard-label 

scheme at the cost of slightly slower running time (see Table 

I). For simple scenes the outputs of the two schemes are often 

the same or have only minor differences. For cluttered scenes 

the two schemes are more likely to output different results. 

The soft-label scheme has better chance of keeping fine 

details, due to the soft likelihoods that are transferred to the 

probability map. 

 

C. Evaluation of Background Prior Propagation 

Overall, about 80% of the time, EFG-BPP converges within 

three iterations of BPP, and most of them select the first 

round as the winner. This suggests that our method still can 

perform well without BPP. Nevertheless, we have seen in 

Table I that the output of the first loop is not necessarily the 

best one. 

 

D. Evaluation of Initial Mask Box 

The background prior propagation mechanism makes 

EFG-BPP tolerant to loose initial mask boxes around the 

foreground subject, since for each iteration the background 

region [6] can move further into the initial box. IVRG 

images[500] allow to test the looser bounding boxes while 

keeping parts of the background prior. For each image, we 

manually assign the maximally allowed range of the 4 edges 

of the mask box such that some common parts of the 

background remain, and test various box sizes within the 

range. 

 

E. Failure Cases 

Failure cases of EFG-BPP were shown in fig.4. In general, if 

the background prior does not match the true background 

well then the method will fails. The similar appearances of 

foreground and background were shown in Fig. 4a, or too 

cluttered background prevents successful background prior 

propagation [6] were shown in Fig. 4b. These can be 

improved by employing a more flexible initial mask. 

 

Fig.4 Example failure cases of EFG-BPP. (a) Failure caused 

by similar foreground and background appearances; (b) 

failure caused by cluttered background. 

 
Fig.4 Example failure cases of EFG-BPP. (a) Failure caused by similar 

foreground and background appearances; (b) failure caused by cluttered 

background. 

 

V. CONCLUSION 

In this paper, an enhanced figure-ground classification 

algorithm which is based on the principles of generating 

multiple candidate segmentations, selecting the most 

promising using several scoring functions, and then fusing 

them with similarity voting. Specifically, image patches are 

generated by using an adaptive mean shift, and by using 

tree-structured likelihood propagation, soft-segmentations 

are produced. By the idea of similarity voting, multiple 

foreground map hypotheses are generated, and select the 

most promising ones. To improve robustness, the 

background prior propagates iteratively and generate 

multiple hypothesis sets. The most promising hypothesis set 

is automatically determined by similarity voting, and fused 

them to yield the final foreground map. Our method produces 

state-of-the-art results on challenging datasets, and is able to 

segment the fine details in the segmentation, as well as 

background holes and multiply-connected foreground 

components.  
 

Type Weizmann 1-obj Weizmann 2-obj IVRG images  Grabcut images 

EFG BPP(hardlabel) 

First iteration 

Last iteration 

0.93±0.010(4.77s) 

0.93±0.011(3.21s) 

0.92±0.014 

0.89±0.019(2.12s) 

0.88±0.021(1.91s) 

0.88±0.021 

0.94±0.005(4.02s) 

0.94±0.004(3.74s) 

0.93±0.006 

0.93±0.018(12.09s) 

0.91±0.027(10.38s) 

0.92±0.021 

EFG-BPP 

First iteration 

Second iteration 

0.94±0.010(4.82s) 

0.93±0.011(3.28s) 

0.92±0.014 

0.90±0.017(3.09s) 

0.89±0.017(2.34s) 

0.88±0.022 

0.95±0.003(5.80s) 

0.94±0.003(4.90s) 

0.93±0.006 

0.93±0.017(25.99s) 

0.92±0.023(15.90s) 

0.92±0.021 

User-select(upper bound ) 0.95±0.009 0.91±0.015 0.96±0.002 0.95±0.013 

Nearest competitors 0.85±0.035(5.67s) 

0.93±0.009 

0.87±0.010 

0.81±0.044(3.95s) 

0.68±0.053 

0.66±0.066 

0.93±0.006(4.96s) 0.89±0.035(12.95s) 
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