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Abstract — Polar coding is an encoding/decoding 

scheme that demonstrably attains the capacity of the 

class of symmetric binary memory-less channels. Due to 

the channel achieving attribute, the polar code turns out 

to be one of the most optimal error-correcting codes. 

But, polar code must be long enough to have a decent 

error- correcting capability. Even if the earlier fully 

parallel encoder is inherent and easy to realize, it is 

inappropriate for long polar codes due to vast hardware 

complexity required. In this work, partially parallel 

folded encoder architecture is designed. The fully 

parallel architecture is transformed by analyzing its 

data flow graph, delay requirement calculation, lifetime 

analysis and register allocation, which gives the 

resultant folded architecture with mitigated hardware 

use. The encoder enhanced in the Very Large Scale 

Integration orientation which allows a tradeoff between 

the throughput and hardware complexity. It can be 

methodically used to the design of any polar code and to 

any degree of parallelism. Finally the power, area and 

delay reports of folded encoder architecture with 

comparison of existing work are presented. 
 

Key Terms— Error correcting codes, FPGA, Polar 

codes, folding transformation. 

I. INTRODUCTION  

 

The aim of communication systems is to 

transmit data reliably over a noisy channel. The 

conventional block diagram of a communication 

system is shown in Figure1. The source encoder 

eliminates the unnecessary information from the 

source’s data. The channel encoder adds redundancy 

to the data such that authentic communication can be 

accomplished over a noisy channel. The function of 

the channel decoder is to replicate the data sent over 

the channel from the channel output. In the end, the 
source decoder reproduces the source’s data from the 

output of channel decoder. Our prime concern in this 

thesis will be the blocks channel encoder, channel. 

 
Figure 1: Communication System 

A. Channel coding 

 

The channel coding objective is to increase 

reliability of data transmission at the cost of 

reduction in information rate. This goal is 

accomplished by appending redundancy to the 

information symbol vector resulting in a longer coded 

vector of symbols that are detectable at the output of 

the channel. 

B. Channel Parameters 

Two important parameters of symmetric B-

DMC’s: The mutual information I(W) and the 
Bhattacharyya parameter  Z(W). 

The capacity of a symmetric B-DMC equals 

the mutual information between the input and output 

of the channel with uniform distribution on the 

inputs. I(W) is a measure of rate in a channel. It is 

familiar that reliable communication is possible over 

a symmetric B-DMC at any rates up to I(W). 

Bhattacharyya parameter is a measure of the 

reliability of a channel 

In the past decades, the core objective of 

coding theory is to invent the new codes that 
approach Shannon limit closer than the prior codes.  

Inspired by this aim, information theoreticians have 

proposed generations of channel codes (Figure 2).

Figure2: Comparison of Channel coding techniques 

 

Since the date being brought in, polar codes 

have received compelling attention from coding 

theory association. Compared to the prior best 

channel codes, polar codes can potentially exceed 

LDPC codes  in  terms  of  error-correcting  
performance  with  the  similar code  rate and code-

length  . Nevertheless,  the  approval  of  new  
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channel  codes  in  IEEE  standards  does  not  only  

depend  on  the error-correcting performance, but 

also needs to consider the efficient VLSI design of 

codec. Inefficient  hardware  performance  of  polar  

codes  decoder  has become  the critical challenge  

that  restrain  the  practical  use  of  polar  codes. 

Even if the polar code has been regarded as 

being associated with low complexity of O (N log N) 

for a polar code of length N and takes n stages when 

N=2n , such a long polar code suffers from huge 

hardware complexity and long latency. 

To be close to the channel capacity, the code 
length should be at least 220 bits, and many literature 

works introduced polar codes ranging from 210 to 215 

to attain decent error-correcting performances in 

practice. 

The performance of improved folded encoder 

architecture can be analyzed by increasing the size of 
the input data and reduce the area coverage and 

delay. The code will be designed based on parameter 

method, it represent the value 'n'. The n value can be 

changed here based upon the memory size of FPGA 

used. 

 

II. POLAR ENCODER 

The name “polar” code is derived from the 
phenomenon of channel polarization [1]. As proved 

in, with efficient construction approach, the 

reliability of decoded bits will be polarized based on 

their different positions at the source data.  

 

Therefore, an effective polar-based 

transmitter can be constructed based on the following 

principles: 1) sending required information bits at 

“good” positions, which can strongly guarantee the 

reliability of transmission; and 2) sending fixed “0” 

at “bad” positions, since after the transmission any 

decoded bits at these “bad” positions are highly 
unreliable. In those “0” bits are called “frozen” bits 

since these are fixed and their positions are known at 

both the encoder and the decoder. Similarly, the non-

frozen information bits are referred as “free” bits. 

Accordingly, an (n, k) polar code contains k 

information (“free”) bits and (n-k) “frozen” bits. 

 

III. FULLY PARALLEL ENCODING 

The fully parallel architecture (Figure 3) 

will contain 4 stages of operation, it will based on 

FFT Butterfly architecture, here the 16 input-bits are 

given (U0, U1, U2, U3, …..... ,U15) and get 16-bits 

output ( X0, X1, X2, X3,..... X15).The inside 

operation uses for fixed XOR gate, and the stage1 

output we can get W1,0 W1,1 W1,2 W1,3.. W1,15 

and the Stage2 output we can get W2,0 W2,1 W2,3 

W2,4...W2,15 and Stage3 output we can get W3,0 
W3,1 W3,2 W3,3...W3,15 and finally we can get the 

16-bit Polar code output[2]. 

This logic will be same for 32-bits, 64-bits, 

128-bits..., based upon this architecture, as the bit 

size increases, the area size also increases. So we 

need the partially parallel encoder architecture for 

long polar codes 
 

 

Figure 3: Parallel architecture for encoding a 16-bit 

polar code 

Disadvantages: It has huge hardware complexity 

with N/2(Log2n) number of XOR gates. It requires 

more Power dissipation. It is not feasible for long 

polar codes to achieve channel capacity. 

The folding transformation [3], [4] is widely 
used to save hardware resources by time-

multiplexing several operations on a functional unit. 

A data flow graph (DFG) corresponding to the fully 

parallel encoding process for 16-bit polar codes is 

shown in Figure 4, where a node represents the 

kernel matrix operation F, and Wij denotes the jth 

edge at the ith stage. Note that the DFG of the fully 

parallel polar encoder is similar to that of the fast 

Fourier transform except that the polar encoder uses 

the kernel matrix instead of the butterfly operation. 
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Figure 4: DFG of 16 bit polar encoding 

 

IV. ENHANCED SYSTEM 

The folding transformation is widely used to 

save hardware resources by time-multiplexing several 

operations on a functional unit.  

Figure 5: Folding transformation Techniques  

A.  Folding sets 

Given the 16-bit DFG, the 4-parallel folded 
architecture that processes 4 bits at a time can be 

realized with placing two functional units in each 

stage since the functional unit computes 2 bits at a 

time. In the folding transformation, determining a 

folding set, which represents the order of operations 

to be executed in a functional unit, is the most 

important design factor. To construct efficient folding 

sets, all operations in the fully parallel encoding are 

first classified as separate folding sets. To construct 

efficient folding sets, all operations in the fully 

parallel encoding are first classified as separate 

folding sets. Since the input is in a natural order, it is 
reasonable to alternatively distribute the operations in 

the consecutive order. Thus, each stage consists of 

two folding sets, each of which contains only odd or 

even operations to be performed by a separate unit. 

Considering the four-parallel input sequence 

in a natural order, stage 1 has two folding sets of {A0, 

A2, A4, A6} and {A1, A3, A5, A7}. Each folding set 

contains four elements, and the position of an 
element represents the operational order in the 

corresponding functional unit. Two functional units 

for stage 1 execute A0 and A1 simultaneously at the 

beginning and A2 and 3 at the next cycle, and so 

forth.  

The folding sets of stage 2 have the same 
order as those of stage 1, i.e., {B0, B2, B4, B6} and 

{B1, B3, B5, B7}, since the four-parallel input 

sequence of stage 2 is equal to that of stage 1. 

Furthermore, to determine the folding sets of another 

stage, the property that the functional unit processes a 

pair of inputs whose indices differ by 2s−1 is 
exploited.  

In the case of stage 3, two data whose 

indices differ by 4 are processed together, which 

implies that the operational distance of the 

corresponding data is two as the kernel functional 

unit computes two data at a time. For instance, w2,0 

and w2,4 that come from B0 and B2 are used as the 
inputs to C0. Since both inputs should be valid to be 

processed in a functional unit, the operations in stage 

3 are aligned to the late input data. Cyclic shifting the 

folding sets right by one, which can be realized by 

inserting a delay of one time unit, is to enable full 

utilization of the functional units by overlapping 

adjacent iterations. As a result, the folding sets of 

stage 3 are determined to {C6, C0, C2, C4} and {C7, 

C1, C3, C5}, where C6 in the current iteration is 

overlapped with A0 and B0 in the next iteration. In 

the same manner, the property that the functional unit 

processes a pair of inputs whose indices differ by 8 is 
exploited in stage 4. The folding sets of stage 4 are 

{D2, D4, D6, D0} and {D3, D5, D7, D1}, which are 

obtained by cyclic shifting the previous folding sets 

of stage 3 by two. Generally speaking, a stage whose 

index s is less than or equal to log2 P, where P is the 

level of parallelism, has the same folding sets 

determined by evenly interleaving the operations in 

the consecutive order, and another stage whose index 

s is larger than log P has the folding sets obtained by 

cyclic shifting the previous folding sets of stage s − 1 

right bys − log P. The logarithm has its base as 2. 
 

B.  Folding equations 

For the folded architecture to be feasible, the 

delay requirements must be larger than or equal to 

zero for all the edges. Pipelining or retiming 
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techniques can be applied to the fully parallel DFG in 

order to ensure that its folded hardware has 

nonnegative delays. 

When an edge Wij from  functional unit U 

to functional unit V has a delay of d, the delay 

requirements for Wij in the F-folded architecture can 
be calculated as 

D( Wij ) = Fd+v−u                                 (1) 

 

Where u and v denote the position in the 

folding set corresponding to U and V, respectively.  

The delay requirements of the 4-folded 

architecture, i.e., D(Wij) for 1 ≤ i ≤ 3 and 0 ≤ j ≤ 15, 

are summarized in Figure 6. For instance, w2,0 from  

B0 to C0 demands one delay since d = 0, v = 1, and 

u= 0. Note that some edges indicated by circles have 

negative delays. 

Every edge with a negative delay should be 

compensated by inserting at least one delay element 

to make the value (1) of not negative. We have to 
make sure that the two inputs of an operation pass 

through the same number of delay elements from the 

starting points. If they are different, additional delay 

elements are inserted to make the paths have the 

same delay elements. The delay elements can be 

observed in the Figure7. 

 

 

 

Figure 6: Original delay requirements D(wij ) and recalculated delay requirements D_(wij ) 

 

 

 

Figure 7: Proposed 4-parallel folded architecture for encoding the polar (n, K) codes. 
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C. Lifetime Analysis and Register Allocation 

For the folded architecture of 16-bit polar 

encoder, there is room for minimizing the number of 

delay elements. The lifetime analysis is employed to 

find the minimum number of delay elements required 

in implementing the folded architecture. The lifetime 
of every variable is graphically represented in the 

linear lifetime chart illustrated in Figure8. Since all 

the edges starting from stage 1 demand no delay 

elements, only w2j and w3j are presented in Figure8.  
For instance, w3, 0 is alive for two cycles as 

it is produced at cycle 1 and consumed at cycle 3. 

The number of variables alive in each cycle is 
presented at the right side of the chart. Note that the 

number of live variables at the fourth or later clock 

cycles takes into account the next iteration 

overlapped with the current iteration. Consequently, 

the maximum number of live variables is 12, which 

means that the folded architecture can be 

implemented with 12 delay elements instead of 48. 

 

Figure 8: Linear lifetime chart for w2j and w3j. 

Once the minimum number of delay 

elements has been determined, each variable is 

allocated to a register. For the above example, the 

register allocation is tabularized in Figure 9 [3]. 

D. Register Minimization Technique 

 

The technique for minimizing register is 

lifetime analysis which analyzes the time for when a 

data is produced (T input) and when a data finally is 

consumed (T output).  

T input = u + PU     (2) 

T output = u + PU + max v {DF (U→V)}  (3) 

Where u is the folding order of U and PU is the 

number of pipelining stages in the functional unit that 

executes u.  

Register allocation can be performed using an 

allocation table. The allocation scheme dictates how 

the variables are assigned to registers in the allocation 

table. 

1) Determine the minimum number of registers 

using lifetime analysis. 

2) Input each variable at the time step 

corresponding to the beginning of its 

lifetime. 

3) Each variable is allocated in a forward 

manner until it is dead or it reaches the last 
register. 

4) Since the allocation is periodic the allocation 

of the current iteration also repeats itself in 

subsequent iterations. 

5) For variables that reach the last register and 

are not yet dead the remaining life period is 

calculated and these variables are allocated 

to a register in a backward manner on a first 

come first served basis. 

6) Repeat steps 4 & 5 as required until the 

allocation is complete. 

 

Figure 9: Register allocation table for w2j and w3j. 
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All the 12 registers are shown at the first row, 

and every row describes how the registers are 

allocated at the corresponding cycle. With taking into 

account the 4-parallel processing, variables are 

carefully allocated to registers in a forward manner. 

In the Figure 9,an arrow dictates that a variable 

stored in a register is migrated to another register, 

and a circle indicates that the variable is consumed at 

the cycle [4] 

A pair of two functional units takes in charge of 
one stage, and the delay elements are to store 

variables according to the register allocation table. 

The hardware structures for stages 1 and 2 can be 

straightforwardly realized as no delay elements are 

necessary in those stages, whereas for stages 3 and 4, 

several multiplexers are placed in front of some 

functional units to configure the inputs of the 

functional units.  

The folded architecture continuously processes 

four samples per cycle according to the folding sets 

and the register allocation table. Note that the folded 

encoder takes a pair of inputs in a natural order and 

generates a pair of outputs in a bit-reversed order. As 

the functional unit in the folded architecture 

processes a pair of 2 bits at a time it maintains the 

consecutive order at the input side and the bit 

reversed order at the output side if a pair of 

consecutive bits is regarded as a single entity [5],[6].  
 

 V. RESULTS AND COMPARISON  

When the enter bit size increases although 

the delay remains constant, gate count increases, 

raises and there may be mild variants in power. 

 

 

 

Table I: SYNTHESIS RESULTS OF POLAR (65536, K) ENCODERS 

Bit size 32 128 2048 8192 32768 65536 

Delay(ns) 2.698 2.698 2.698 2.698 2.698 2.698 

Gate count 261  

(165+96) 

328(203+125) 452 

(279+173) 

514 

(317+197) 

576( 

355+221) 

607(374+233) 

Power(W) 0.121 0.123 0.132 0.135 0.137 0.138 

 

 

Table II: GATE COUNTS OF POLAR (N, K) ENCODERS 

 

 

 

 

Code length 1024 2048 8192 32768 65536 

Design Existing proposed Existing proposed Existing proposed proposed proposed 

Logic 1486 260 1651 279 2127 317 355 374 

Register 7283 161 16661 173 66337 197 221 233 

Total 8769 421 18312 452 68464 514 576 607 
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The black box defines what are the inputs and outputs 
of our design 

 

Figure 10: Black box 

The Register Transfer Level converts the code into 

block diagram 

 

Figure 11: RTL schematic 

The Technology schematic defines the usage of the 

LUT’s, number of slices, number of IOB’s. 

 

Figure 12: Technology schematic 

 

Figure 13: Simulation results 

VI. CONCLUSION 

The partially parallel encoder architecture 

which supports long polar codes is developed. For the 
this procedure, we are increasing the size of the 

inputs but field optimization is achieved. The 

experimental results exhibit the hardware self-

discipline to curb within the proposed technique. The 

polar encoder can be implemented with various 

parallelism depend on application. It has applications 

in wireless communication protocols .Polar codes can 

be concatenated with other powerful error correcting 

codes to achieve more optimal solutions for data 

storage applications. 
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