
ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2366
 All Rights Reserved © 2016 IJARECE

Implementation of Parameter based Partially

Parallel Encoder Architecture for Long Polar

Codes

SRINATH.P, SAMUEL JOHN.J

Abstract — Polar coding is an encoding/decoding

scheme that demonstrably attains the capacity of the

class of symmetric binary memory-less channels. Due to

the channel achieving attribute, the polar code turns out

to be one of the most optimal error-correcting codes.

But, polar code must be long enough to have a decent

error- correcting capability. Even if the earlier fully

parallel encoder is inherent and easy to realize, it is

inappropriate for long polar codes due to vast hardware

complexity required. In this work, partially parallel

folded encoder architecture is designed. The fully

parallel architecture is transformed by analyzing its

data flow graph, delay requirement calculation, lifetime

analysis and register allocation, which gives the

resultant folded architecture with mitigated hardware

use. The encoder enhanced in the Very Large Scale

Integration orientation which allows a tradeoff between

the throughput and hardware complexity. It can be

methodically used to the design of any polar code and to

any degree of parallelism. Finally the power, area and

delay reports of folded encoder architecture with

comparison of existing work are presented.

Key Terms— Error correcting codes, FPGA, Polar

codes, folding transformation.

I. INTRODUCTION

The aim of communication systems is to

transmit data reliably over a noisy channel. The

conventional block diagram of a communication

system is shown in Figure1. The source encoder

eliminates the unnecessary information from the

source’s data. The channel encoder adds redundancy

to the data such that authentic communication can be

accomplished over a noisy channel. The function of

the channel decoder is to replicate the data sent over

the channel from the channel output. In the end, the
source decoder reproduces the source’s data from the

output of channel decoder. Our prime concern in this

thesis will be the blocks channel encoder, channel.

Figure 1: Communication System

A. Channel coding

The channel coding objective is to increase

reliability of data transmission at the cost of

reduction in information rate. This goal is

accomplished by appending redundancy to the

information symbol vector resulting in a longer coded

vector of symbols that are detectable at the output of

the channel.

B. Channel Parameters

Two important parameters of symmetric B-

DMC’s: The mutual information I(W) and the
Bhattacharyya parameter Z(W).

The capacity of a symmetric B-DMC equals

the mutual information between the input and output

of the channel with uniform distribution on the

inputs. I(W) is a measure of rate in a channel. It is

familiar that reliable communication is possible over

a symmetric B-DMC at any rates up to I(W).

Bhattacharyya parameter is a measure of the

reliability of a channel

In the past decades, the core objective of

coding theory is to invent the new codes that
approach Shannon limit closer than the prior codes.

Inspired by this aim, information theoreticians have

proposed generations of channel codes (Figure 2).

Figure2: Comparison of Channel coding techniques

Since the date being brought in, polar codes

have received compelling attention from coding

theory association. Compared to the prior best

channel codes, polar codes can potentially exceed

LDPC codes in terms of error-correcting
performance with the similar code rate and code-

length . Nevertheless, the approval of new

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2367
 All Rights Reserved © 2016 IJARECE

channel codes in IEEE standards does not only

depend on the error-correcting performance, but

also needs to consider the efficient VLSI design of

codec. Inefficient hardware performance of polar

codes decoder has become the critical challenge

that restrain the practical use of polar codes.

Even if the polar code has been regarded as

being associated with low complexity of O (N log N)

for a polar code of length N and takes n stages when

N=2n , such a long polar code suffers from huge

hardware complexity and long latency.

To be close to the channel capacity, the code
length should be at least 220 bits, and many literature

works introduced polar codes ranging from 210 to 215

to attain decent error-correcting performances in

practice.

The performance of improved folded encoder

architecture can be analyzed by increasing the size of
the input data and reduce the area coverage and

delay. The code will be designed based on parameter

method, it represent the value 'n'. The n value can be

changed here based upon the memory size of FPGA

used.

II. POLAR ENCODER

The name “polar” code is derived from the
phenomenon of channel polarization [1]. As proved

in, with efficient construction approach, the

reliability of decoded bits will be polarized based on

their different positions at the source data.

Therefore, an effective polar-based

transmitter can be constructed based on the following

principles: 1) sending required information bits at

“good” positions, which can strongly guarantee the

reliability of transmission; and 2) sending fixed “0”

at “bad” positions, since after the transmission any

decoded bits at these “bad” positions are highly
unreliable. In those “0” bits are called “frozen” bits

since these are fixed and their positions are known at

both the encoder and the decoder. Similarly, the non-

frozen information bits are referred as “free” bits.

Accordingly, an (n, k) polar code contains k

information (“free”) bits and (n-k) “frozen” bits.

III. FULLY PARALLEL ENCODING

The fully parallel architecture (Figure 3)

will contain 4 stages of operation, it will based on

FFT Butterfly architecture, here the 16 input-bits are

given (U0, U1, U2, U3, …..... ,U15) and get 16-bits

output (X0, X1, X2, X3,..... X15).The inside

operation uses for fixed XOR gate, and the stage1

output we can get W1,0 W1,1 W1,2 W1,3.. W1,15

and the Stage2 output we can get W2,0 W2,1 W2,3

W2,4...W2,15 and Stage3 output we can get W3,0
W3,1 W3,2 W3,3...W3,15 and finally we can get the

16-bit Polar code output[2].

This logic will be same for 32-bits, 64-bits,

128-bits..., based upon this architecture, as the bit

size increases, the area size also increases. So we

need the partially parallel encoder architecture for

long polar codes

Figure 3: Parallel architecture for encoding a 16-bit

polar code

Disadvantages: It has huge hardware complexity

with N/2(Log2n) number of XOR gates. It requires

more Power dissipation. It is not feasible for long

polar codes to achieve channel capacity.

The folding transformation [3], [4] is widely
used to save hardware resources by time-

multiplexing several operations on a functional unit.

A data flow graph (DFG) corresponding to the fully

parallel encoding process for 16-bit polar codes is

shown in Figure 4, where a node represents the

kernel matrix operation F, and Wij denotes the jth

edge at the ith stage. Note that the DFG of the fully

parallel polar encoder is similar to that of the fast

Fourier transform except that the polar encoder uses

the kernel matrix instead of the butterfly operation.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2368
 All Rights Reserved © 2016 IJARECE

Figure 4: DFG of 16 bit polar encoding

IV. ENHANCED SYSTEM

The folding transformation is widely used to

save hardware resources by time-multiplexing several

operations on a functional unit.

Figure 5: Folding transformation Techniques

A. Folding sets

Given the 16-bit DFG, the 4-parallel folded
architecture that processes 4 bits at a time can be

realized with placing two functional units in each

stage since the functional unit computes 2 bits at a

time. In the folding transformation, determining a

folding set, which represents the order of operations

to be executed in a functional unit, is the most

important design factor. To construct efficient folding

sets, all operations in the fully parallel encoding are

first classified as separate folding sets. To construct

efficient folding sets, all operations in the fully

parallel encoding are first classified as separate

folding sets. Since the input is in a natural order, it is
reasonable to alternatively distribute the operations in

the consecutive order. Thus, each stage consists of

two folding sets, each of which contains only odd or

even operations to be performed by a separate unit.

Considering the four-parallel input sequence

in a natural order, stage 1 has two folding sets of {A0,

A2, A4, A6} and {A1, A3, A5, A7}. Each folding set

contains four elements, and the position of an
element represents the operational order in the

corresponding functional unit. Two functional units

for stage 1 execute A0 and A1 simultaneously at the

beginning and A2 and 3 at the next cycle, and so

forth.

The folding sets of stage 2 have the same
order as those of stage 1, i.e., {B0, B2, B4, B6} and

{B1, B3, B5, B7}, since the four-parallel input

sequence of stage 2 is equal to that of stage 1.

Furthermore, to determine the folding sets of another

stage, the property that the functional unit processes a

pair of inputs whose indices differ by 2s−1 is
exploited.

In the case of stage 3, two data whose

indices differ by 4 are processed together, which

implies that the operational distance of the

corresponding data is two as the kernel functional

unit computes two data at a time. For instance, w2,0

and w2,4 that come from B0 and B2 are used as the
inputs to C0. Since both inputs should be valid to be

processed in a functional unit, the operations in stage

3 are aligned to the late input data. Cyclic shifting the

folding sets right by one, which can be realized by

inserting a delay of one time unit, is to enable full

utilization of the functional units by overlapping

adjacent iterations. As a result, the folding sets of

stage 3 are determined to {C6, C0, C2, C4} and {C7,

C1, C3, C5}, where C6 in the current iteration is

overlapped with A0 and B0 in the next iteration. In

the same manner, the property that the functional unit

processes a pair of inputs whose indices differ by 8 is
exploited in stage 4. The folding sets of stage 4 are

{D2, D4, D6, D0} and {D3, D5, D7, D1}, which are

obtained by cyclic shifting the previous folding sets

of stage 3 by two. Generally speaking, a stage whose

index s is less than or equal to log2 P, where P is the

level of parallelism, has the same folding sets

determined by evenly interleaving the operations in

the consecutive order, and another stage whose index

s is larger than log P has the folding sets obtained by

cyclic shifting the previous folding sets of stage s − 1

right bys − log P. The logarithm has its base as 2.

B. Folding equations

For the folded architecture to be feasible, the

delay requirements must be larger than or equal to

zero for all the edges. Pipelining or retiming

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2369
 All Rights Reserved © 2016 IJARECE

techniques can be applied to the fully parallel DFG in

order to ensure that its folded hardware has

nonnegative delays.

When an edge Wij from functional unit U

to functional unit V has a delay of d, the delay

requirements for Wij in the F-folded architecture can
be calculated as

D(Wij) = Fd+v−u (1)

Where u and v denote the position in the

folding set corresponding to U and V, respectively.

The delay requirements of the 4-folded

architecture, i.e., D(Wij) for 1 ≤ i ≤ 3 and 0 ≤ j ≤ 15,

are summarized in Figure 6. For instance, w2,0 from

B0 to C0 demands one delay since d = 0, v = 1, and

u= 0. Note that some edges indicated by circles have

negative delays.

Every edge with a negative delay should be

compensated by inserting at least one delay element

to make the value (1) of not negative. We have to
make sure that the two inputs of an operation pass

through the same number of delay elements from the

starting points. If they are different, additional delay

elements are inserted to make the paths have the

same delay elements. The delay elements can be

observed in the Figure7.

Figure 6: Original delay requirements D(wij) and recalculated delay requirements D_(wij)

Figure 7: Proposed 4-parallel folded architecture for encoding the polar (n, K) codes.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2370
 All Rights Reserved © 2016 IJARECE

C. Lifetime Analysis and Register Allocation

For the folded architecture of 16-bit polar

encoder, there is room for minimizing the number of

delay elements. The lifetime analysis is employed to

find the minimum number of delay elements required

in implementing the folded architecture. The lifetime
of every variable is graphically represented in the

linear lifetime chart illustrated in Figure8. Since all

the edges starting from stage 1 demand no delay

elements, only w2j and w3j are presented in Figure8.
For instance, w3, 0 is alive for two cycles as

it is produced at cycle 1 and consumed at cycle 3.

The number of variables alive in each cycle is
presented at the right side of the chart. Note that the

number of live variables at the fourth or later clock

cycles takes into account the next iteration

overlapped with the current iteration. Consequently,

the maximum number of live variables is 12, which

means that the folded architecture can be

implemented with 12 delay elements instead of 48.

Figure 8: Linear lifetime chart for w2j and w3j.

Once the minimum number of delay

elements has been determined, each variable is

allocated to a register. For the above example, the

register allocation is tabularized in Figure 9 [3].

D. Register Minimization Technique

The technique for minimizing register is

lifetime analysis which analyzes the time for when a

data is produced (T input) and when a data finally is

consumed (T output).

T input = u + PU (2)

T output = u + PU + max v {DF (U→V)} (3)

Where u is the folding order of U and PU is the

number of pipelining stages in the functional unit that

executes u.

Register allocation can be performed using an

allocation table. The allocation scheme dictates how

the variables are assigned to registers in the allocation

table.

1) Determine the minimum number of registers

using lifetime analysis.

2) Input each variable at the time step

corresponding to the beginning of its

lifetime.

3) Each variable is allocated in a forward

manner until it is dead or it reaches the last
register.

4) Since the allocation is periodic the allocation

of the current iteration also repeats itself in

subsequent iterations.

5) For variables that reach the last register and

are not yet dead the remaining life period is

calculated and these variables are allocated

to a register in a backward manner on a first

come first served basis.

6) Repeat steps 4 & 5 as required until the

allocation is complete.

Figure 9: Register allocation table for w2j and w3j.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2371
 All Rights Reserved © 2016 IJARECE

All the 12 registers are shown at the first row,

and every row describes how the registers are

allocated at the corresponding cycle. With taking into

account the 4-parallel processing, variables are

carefully allocated to registers in a forward manner.

In the Figure 9,an arrow dictates that a variable

stored in a register is migrated to another register,

and a circle indicates that the variable is consumed at

the cycle [4]

A pair of two functional units takes in charge of
one stage, and the delay elements are to store

variables according to the register allocation table.

The hardware structures for stages 1 and 2 can be

straightforwardly realized as no delay elements are

necessary in those stages, whereas for stages 3 and 4,

several multiplexers are placed in front of some

functional units to configure the inputs of the

functional units.

The folded architecture continuously processes

four samples per cycle according to the folding sets

and the register allocation table. Note that the folded

encoder takes a pair of inputs in a natural order and

generates a pair of outputs in a bit-reversed order. As

the functional unit in the folded architecture

processes a pair of 2 bits at a time it maintains the

consecutive order at the input side and the bit

reversed order at the output side if a pair of

consecutive bits is regarded as a single entity [5],[6].

 V. RESULTS AND COMPARISON

When the enter bit size increases although

the delay remains constant, gate count increases,

raises and there may be mild variants in power.

Table I: SYNTHESIS RESULTS OF POLAR (65536, K) ENCODERS

Bit size 32 128 2048 8192 32768 65536

Delay(ns) 2.698 2.698 2.698 2.698 2.698 2.698

Gate count 261

(165+96)

328(203+125) 452

(279+173)

514

(317+197)

576(

355+221)

607(374+233)

Power(W) 0.121 0.123 0.132 0.135 0.137 0.138

Table II: GATE COUNTS OF POLAR (N, K) ENCODERS

Code length 1024 2048 8192 32768 65536

Design Existing proposed Existing proposed Existing proposed proposed proposed

Logic 1486 260 1651 279 2127 317 355 374

Register 7283 161 16661 173 66337 197 221 233

Total 8769 421 18312 452 68464 514 576 607

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2372
 All Rights Reserved © 2016 IJARECE

The black box defines what are the inputs and outputs
of our design

Figure 10: Black box

The Register Transfer Level converts the code into

block diagram

Figure 11: RTL schematic

The Technology schematic defines the usage of the

LUT’s, number of slices, number of IOB’s.

Figure 12: Technology schematic

Figure 13: Simulation results

VI. CONCLUSION

The partially parallel encoder architecture

which supports long polar codes is developed. For the
this procedure, we are increasing the size of the

inputs but field optimization is achieved. The

experimental results exhibit the hardware self-

discipline to curb within the proposed technique. The

polar encoder can be implemented with various

parallelism depend on application. It has applications

in wireless communication protocols .Polar codes can

be concatenated with other powerful error correcting

codes to achieve more optimal solutions for data

storage applications.

VII.REFERENCE

1. Arikan, E. (2009) Channel Polarization: A

Method for Constructing Capacity-Achieving

Codes for Symmetric Binary-Input Memory less

Channels. IEEE Transactions on Information
Theory, 55, 3051-3073.

2. HoyoungYoo, and In-Cheol Park, „Partial

parallel encoder architecture for long polar

codes‟, IEEE Transactions on Circuits and

Systems II, Oct. 21, 2014.

3. K.K. Parhi, VLSI Digital Signal Processing

Systems: Design and Implementation.

Hoboken, NJ, USA: Wiley, 1999

4. Parhi, K.K. (1995) Calculation of Minimum

Number of Registers in Arbitrary Life Time

Chart. IEEE Transactions on Circuits and

Systems II: Analog and Digital Signal
Processing, 41, 434-436

5. Hwang, F.K. (1984) Computer Architecture and

Parallel Processing. McGraw-Hill, USA.

6. Hennessy, D.J. (1996) Computer Architecture: A

Qualitative Approach. Morgan Kaufmann, USA.

