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Abstract—Floating-point arithmetic is ever-present in computer 

systems. All most all computer languages has supports a floating-

point number types. Most of the computer compilers called upon 

floating-point algorithms from time to time for execution of the 

floating-point arithmetic operations and every operating system 

must be react virtually for floating-point exceptions like 

underflow and overflow. The double-precision floating arithmetic 

is mainly used in  the digital signal processing (filters, FFTs) 

applications, numerical applications and scientic applications. 

The double-precision floating arithmetic operations are the 

addition, the subtraction, the multiplication, and the division. 

Among the all arithmetic operations, multiplication is widely 

used and most complex arithmetic operation. The double-

precision (64-bit) floating point number is divide into three fields, 

Sign field, Exponent field and Mantissa field. The most 

significant bit of the number is a sign field and it is a  1-bit 

length, next 11-bits represents the exponent field of the number 

and remaining 52-bits are  represents the mantissa field of the 

number. The double-precision floating-point multiplier requires 

a large 52x52 mantissa multiplications. The performance of the 

double-precision floating number multiplication mainly depends 

on the area and speed. The proposed work presents a novel 

approach to decrease this huge multiplication of mantissa. The 

Urdhva Tiryagbhyam technique permits to using a smaller 

number of multiplication hardware compared to the 

conventional method. In traditional method adding of the partial 

products are separately done and it takes more time in 

comparision with the proposed metdod. In proposed method the 

partial products are concurrently added with the multiplication 

operaton and it canreduce the time delay. The double-precision 

floating multiplier is implemented using Verilog HDL with Xilinx 

ISE tools on Virtex-5 FPGA.  

 

Keywords-Double-precision, Floating point, Multiplication, Vedic, 

Urdhva Tiryagbhyam, IEEE-754, Virtex-5 FPGA. 

 

I. INTRODUCTION 

The real numbers[2] are represented in binary format 

is called as floating point numbers. The floating-point 

numbers are IEEE-754 standards split into two types, first one 

is binary interchange format and second one decimal 

interchange format. The IEEE-754 standard[8] of floating-

point numbers are the single precision (32-bit) format and the 

double-precision (64-bit) format. 

The fig.1 represents single-precision (32-bit) floating 

point number format. In single-precision floating point 

number has 32-bits of length. The total 32-bits are divided into 

three fields, 31st bit of the number  sign (1-bit) field, 30th bit to 

23rd bit of the number is   exponent (8-bits) field and 22nd bit 

to 0thbit of the number is  mantissa (23-bits) field. 
 

 

 

 

 

Fig. 1: Single Precision (32-bit) floating point number format representation. 

The fig. 2 represents the double-precision (64-bit) 

floating point number format. The double-precision floating 

point number has 64-bits of length. The total 64-bits are 

divided into three fields, 63rd bit of the number is sign (1-bit) 

filed, 62nd to 52nd bit of the number is exponent (11-bits) filed 

and 51st to 0th bit of the number is mantissa (52-bits) filed. 

 

 

 

Fig. 2: Double Precision (64-bit) floating point number format representation. 

 

The IEEE-754 standard of hardware implementations 

for floating point arithmetic operations are very important in 

all processors. The multiplication operation is crucial and very 
important among the all. The area of the application is main 

constraint which should be minimum and provides a greater 

speed. The area efficient implementation of floating point 

arithmetic operation and thus the efficient implementation of 

floating point multiplier are of a major concern. 

 

Most of the high performance computations can be 

implemented by using the FPGAs (Field Programmable Gate 

Arrays)[7]. The  FPGAs supports the high speed, large amount 

of logic resources i.e. large slice count and large LUTs and 

limited accessible on – board intellectual property (IP)[4] 
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cores builds a large set of applications.  Now a days FPGAs 

can be used in tremendous applications like arithmetical and 

scientific computations, digital signal and image processing, 

communications, and cryptography computations. The 

proposed work is mainly focusing on the double-precision 

floating point multiplication implementation on FPGA 
platform. 

The mantissa multiplication is most important and 

essential part for multiplication of the double precision 

floating point numbers. This is the main bottleneck of the 

performance. The double precision floating point number’s 

mantissa  is in 53-bits length, and this require a hardware 

implementation of 53x53 multipliers, which is very cost 

effective and expensive. In this work, one algorithm has 

proposed for the double precision floating numbers 

multiplication and it can be permits to using a reduced amount 

of multiplication accomplish a high speed at  comparatively 

low hardware resources cost. The prosed method of 
multiplication results can be Comparing with Karatsuba 

algorithm[1] results. The implementation is mainly concerned 

only normalized numbers. The implementation can be done by 

using Xilinx ISE synthesis tool, ISIM simulator and Virtex-

5[4](xc5vlx110t-1ff1136) speed grade-1 FPGA platform. 

 The paper contains the Introducation in section 1, 

section 2 has Proposed Approach of Design, section 3 has 

implement the design, section 4 has design results and finally 

conclusion of the paper is presenting section 5. 

 

II. PROPOSED APPROACH OF DESIGN 

        ThenKaratsuba Multiplication Technique is using to 

designing proposed method of multplication. This 

multiplication technique is break up the two mantissas  into 

three parts in fig. 3. 

  

 
Fig. 3 53-bit mantissa is splitted into 17-bit and 18-bit fractions 

 

The 53-bit mantissa[1] is splitted into 17-bit and 18-

bit signed fractions. The terms w0 and w1 represents the 18-bit 

fraction and w2 represents the 17-bit fraction of the one of the 

input operand. In the same way x0 and x1represents the 18-bit 

fractions and x2 represents 17-bit fraction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.4 18-bit and 19-bit Multipliers 

The designing of 53x53-bit mantissa multiplication is 

realized by using the 18-bit multiplier and 19-bit multipliers. 

The fig. 4 represents the 18-bit multiplier and 19-bit 

multipliers. The multiplier of 18-bit has 1-bit sign bit and 17-

bits fractional bits, the first step is to multiply two 17-bits of 

the input operands and generate a partial product p0 then 

generate a p1,p2, and p3. In the same way 19-bit multiplier is 

also design. 

The designing of Vedic multiplier is supports Vedic 

multiplication[5] principles (sutras). These principles are 

broadly used for the multiplication of two large decimal 

numbers. This same sutra can be used to perform 

multiplication[5] on two large binary numbers and it shown in 

fig. 5.. This proposed method is compatible to design digital 

hardware system. The Urdhva Tiryagbhyam technique[4] can 
take (2n-1) steps for designing the n-bit multiplier. In fig. 5 4-

bit multiplier can take 7-steps for designing of the multiplier. 

 
Fig.5 Steps involved for  4-bit binary numbers multiplication using Urdhva 

Tiryagbhyam Technique. 

The 4-bit binary multiplier using Urdhva 

Tiryagbhyam technique is shown in fig. 5. The 4-bit multiplier 

has 4-bit multiplier as one of the operand and 4-bit 

multiplicand is the another operand. The carry resents the 

previous state generated carry and it can be added to the 

current to get the final product. 

 

 

 

 

1-bit    17-bits 

1-bit    17-bits 

       18-bits 

17x17 Mult   P0 

1x17 Mult   P1 

1x17 Mult   P2 

1x1Mult   P3 

2-bits   17-bits 

2-bits   17-bits 

      19-bits 

17x17 Mult       P0 

2x17 Mult     P1 

2x17 Mult     P2 

2x2Mult   P3 



ISSN: 2278 – 909X 

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)  

Volume 5, Issue 10, October 2016 

2419 

All Rights Reserved © 2016 IJARECE 

III. IMPLEMENTATION 

 

Designing of the multiplier for floating-point 

numbers carries the operation separately by sign bit, exponent 

bits and mantissa bits. 

 

A. Sign and Exponent operations. 

The sign and exponent operations are performed in a 

straightforward manner. The operand 1 and operand 2 of  sign-

bits are carry out the operation of  logical XOR. 

Sign_out=Sign_in1 Ө Sign_in2 

The resultant exponent field of the number is addition of 

operand 1’s exponent and operand 2’s exponent and 

subtracting the BIAS i.e. 

Exp_out=Exp_in1+Exp_in2-1023 

For double-precision floating number, the BIAS is equals to 

1023 i.e. (211-1-1). 

The BIAS of the any floating point number is determined by 

(2exponent bits-1-1). 

 

B. Exceptional Case Handling 
The IEEE standard as defined by the many exceptional cases 

like NaN (Not a Number), INFINITE, ZERO, UNDERFLOW, 

OVERFLOW. These are appearing for all the floating point 

arithmetic operations. The main operation has been also 

combined with the detection of all the exceptional cases, and 

determining the final output as per standard. All the 

exceptional cases executions are in parallel with the IEEE-754 

standard. 

The fig. 6 represents the flowchart of the handling of 

exceptional cases. 
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(b) 
Fig. 6 Flowchart for handling of exceptional cases (a) infinite case (b) 

OVERFLOW and UNDERFLOW cases 

 

If one of the operand or both of the operands are 

infinity; then generate a INFINITY output (with calculate 

sign-bit). If denormalized number is one of the input operand, 

then the output is zero (w.r.to sign-bit). If the zero or below 

zero as output exponent, the displayed output is 

UNDERFLOW, and the 11’h7fe (2046 in decimal) is the 
output exponent, OVERFLOW as displayed output.  
 

 

C. Normalization and Rounding 

For getting of the the final result after mantissa 

multiplication the normalization is mandatory. After the 

mantissa multiplication, the resultant number has one extra bit 

in most significant bit before the decimal point. Similarly, in 

sometimes the same situation will arise after rounding. So, 

whenever the additional carry bit is produced after 

multiplication or rounding, the resultant product must be right-

shifted for necessary shifts and the corresponding alterations 

should be made in exponent also to get the normalized result. 

 Rounding is necessary to get back the 106-bit 

mantissa multiplication result to 53-bit result only. In this 

paper only implemented Round to nearest rounding mode 

precised by the IEEE-754 standard and remaining modes can 

be implementing as per the application requirement. 
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IV. RESULTS 

The FPGA implemenatation of double precision 

floating point multiplier using Urdhva Tiryagbhyam technique 

is divided into 18-bit multiplier, 19-bit multiplier and 53-bit 

mantissa multiplier. The 53-bit multiplier is designed by 

combining the 18-bit and 19-bit multipliers. The 18-bit 

multiplier, 19-bit multiplier and 53-bit mantissa multipliers are 

in followed figures 7-16. 

 
Fig. 7 Simulation result of 18-bit Urdhva Tiryagbhyam multiplier 

The simulation result of 18-bit multiplier using Urdhva 

Tiryagbhyam multiplication technique is in fig. 7.Here Ain and 

Bin are the two input signals.In this Ain is one of the operand 

which is 18-bits in length and Bin is other operand which is 

also an 18-bits in length. These two operands are performing a 

multiplication operation and produce a 36-bit of result. 

INPUTS: Ain[17:0]=18’h00256; Bin[17:0]=18’h00100;  

OUTPUT: Y[35:0]=36’h000025600;  

 
Fig. 8 RTL Schematic of 18-bit Urdhva Tiryagbhyam multiplier 

The fig. 8 represents the RTL Schematic of 18-bit multiplier 

using Urdhva Tiryagbhyam multiplication technique. In this 

Ain and Bin are the input operand each one has the 18-bits in 

length and output Y is 36-bits in length. 
 

 
Fig. 9 Simulation result of 19-bit Urdhva Tiryagbhyam multiplier 

The simulation results of 19-bit multiplier using Urdhva 

Tiryagbhyam multiplication technique is in fig. 9. Ain and Bin 
are the two input operand of the 19-bit multiplier and Y is the 

output produced by the multiplier. 

INPUTS: Ain[18:0]=19’h00019; Bin[18:0]=19’h0000F; 

OUTPUT: Y[37:0]=38’h0000000177; 

 
Fig. 10 RTL Schematic of 19-bit Urdhva Tiryagbhyam multiplier 

 

The fig. 10 is the RTL Schematic of 19-bit multiplier using 

Urdhva Tiryagbhyam multiplication technique. Ain and Bin are 

two operands which are give to input to the multiplier and 

output of the multiplier displays as Y which is 38-bits in 

length. 

 

 
Fig. 11 Simulation result of 53-bits mantissa multiplier 

Simulation result of 53x53-bit multiplier is in fig. 11. In this 

Ain and Bin are the inputs of the multiplier; each one has 53-

bits in length and output Y has 106-bits in length. 

INPUTS:Ain[52:0]=53’h01234589756478; 

Bin[52:0]=53’h05689745689523; 

OUTPUT: Y[105:0]=106’h0000000000000000005B36392F6; 
 

 
Fig. 12 RTL Schematic of 53-bit mantissa multiplier 

 

The mantissa bits of the double-precision floating point 

multiplier have 53-bits. The 53-bit x 53-bit multiplier design is 

very difficult, the 53-bits are divided into 18-bits and 19-bits 

and design the multipliers. These multipliers are added to get 

the 53-bit mantissa multiplier.The fig.12 shows  the RTL 
Schematic of 53x53-bits multiplier using Urdhva 

Tiryagbhyam multiplication technique. Here Ain and Bin are 

the input operands of the 53-bit multiplier; Y is the output of 

the multiplier. 
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Fig. 13 Technology Schematic of 53-bit mantissa multiplier 

The fig. 13 shows the technology schematic of the mantissa 

bits multiplier. In this the red color wires are interconnecting 

wiring network of the circuit. The technology schematic has 

adders, subtractors and multipliers. These components 
internally through wiring network to build the actual circuit. 

 
Fig. 14 Simulation result of double-precision Urdhva Tiryagbhyam multiplier 

The resulting waveform of the double-precision Urdhva 

Tiryagbhyam multiplier has two inputs and each one has 64-

bits wide. The two 64-bit input operands are performed 

multiplication operation; the resultant has 64-bits length.The 

fig. 14 shows the simulation resulting waveform of double-

precision Urdhva Tiryagbhyam multiplier. In this the 
exceptional conditions like overflow and underflow are 

checked by applying the inputs A[63:0]=000a8954b8963b45 

and  B[63:0]=0008df5678524569.  The output will display all 

zeros because of an exceptional case. The exceptional case is 

resultant exponent is less than or equal to zero. 

 
Fig. 15 RTL Schematic of double-precision Urdhva Tiryagbhyam multiplier 

The RTL Schematic of double-precision Urdhva Tiryagbhyam 

multiplier is shown in fig. 15. The inputs are A[63:0], B[63:0], 

clock and reset and outputs areY[63:0], underflow and 

overflow. A[63:0] has 64-bit of floating point operand and 

B[63:0] has 64-bit of another floating point operand. These 

two operands are applied to inputs of floating point multiplier. 
The Y[63:0] is 64-bit floating point multiplier output. 

Overflow and underflow are exceptional conditions occur 

during the floating point multiplication. 

 

 
Fig.16 Technology Schematic of double-precision Urdhva Tiryagbhyam 

multiplier 

The Technology schematic is in fig. 16 represents the how the 

components are internally connected. It also represents how 

the  circuits are actually arranged in the FPGA. 

Table 1: Device utilization summary. 

 

Device 

No. of. Slice Registers No. of. Slice LUTs 

Karatsuba 

Multiplier 

Urdhva 

Tiryagbhy

am 

Multiplier 

 

Karatsuba 

Multiplier 

Urdhva 

Tiryagbhy

am 

Multiplier 

 

Spartan-2 

(xc2s15-

6cs144) 

1877 1970 3599 3607 

Spartan-2 

(xc2s200-

6fg256) 

1878 1970 3599 3607 

Spartan-2e 

(xc2s600e-

7fg676) 

1933 1969 3599 3607 

Spartan-3 

(xc3s4000l

-4fg900) 

797 504 1384 900 

Spartan-3a 

(xc3s1400

a-5fg676) 

798 526 1378 936 

Spartan-3e 

(xc3s1600

e-5fg484) 

798 525 1378 936 

Virtex-2 

(xc2v6000

-6ff1517) 

796 506 1384 902 

Virtex-2p 

(xc2vpx70

-7ff1704) 

796 506 1384 902 

Virtex-4 

(xc4vlx200

-11ff1513) 

798 441 1384 775 

Virtex-

5(xc5vlx11

0t-

1ff1136) 

390 373 1456 617 

 

Table 1 represents the Device utilization summary. In this the 

comparision parameters are number slice registers and number 

of slice LUTs. These two parameters are comparision with the 

Karatsuba multiplier and Urdhva Tiryagbhyam multiplier. The 

devices are changed from Spartan to Virtex the number slice 
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registers used by the multipliers are reduced and also number 

of slice LUTs are reduced. In this the designinig of the Urdhva 

Tiryagbhyam multiplier requires minimum amount of logic 

resources to perform double-precision floating point 

multiplication operations. 

The fig. 17 represents the delay representation of 

Karatsuba and Urdhva Tiryagbhyam multipliers. The delay of 

the both the multipliers are measured in nano seconds. The 

delay of the Karatsuba multiplier is 18.139ns and delay of the 

Urdhva Tiryagbhyam multiplier is 15.034ns. The delay of the 

Urdhva Tiryagbhyam multiplier is less compared to the 

Karatsuaba multiplier so Urdhva Tiryagbhyam multiplier is 

fast in comparison with the Karatsuba multiplier. 

 

Fig. 17 Delay representation of Karatsuba and Urdhva Tiryagbhyam 

multipliers 

 

The fig. 18 represents the Power consumption of the 

Karatsuba multiplier and Urdhva Tiryagbhyam multipliers. In 

this X-axis takes frequency in MHzs and Y- axis takes power 

in terms of watts. The frequency is from 10MHz to 600MHz 

and note down the power at the frequencies. In this fig. 18 

observes the Karatsuba multiplier consumes more power in 

comparison with the Urdhva Tiryagbhyam multiplier. 
 

 

 
Fig. 18 Power consumption of Karatsuba and Urdhva Tiryagbhyam 

multipliers 

 

V. CONCLUSION 
The FPGA implementation of double-precision floating point 

multiplier using Urdhva Tiryagbhyam technique achieved the 

high speed and less area consumption compared to the 

Karatsuba multiplier and it is fully compatible with the binary 

interchange format of IEEE-754 standards.The design handles 

the various exceptional conditions like OVERFLOW and 

UNDERFLOW . 
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