
ISSN: 2278 – 909X

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2417

All Rights Reserved © 2016 IJARECE

VLSI Implementation of High Speed and Area

Efficient Double-Precision Floating Point Multiplier
 Ramireddy Venkata Suresh1, K.Bala2

 1 M.Tech, Dept of ECE, Srinivasa Institute of Technology and Science, Ukkayapalli, kadapa, India

 2 Associate Professor, Dept of ECE, Srinivasa Institute of Technology and Science, Ukkayapalli, kadapa, India

Abstract—Floating-point arithmetic is ever-present in computer

systems. All most all computer languages has supports a floating-

point number types. Most of the computer compilers called upon

floating-point algorithms from time to time for execution of the

floating-point arithmetic operations and every operating system

must be react virtually for floating-point exceptions like

underflow and overflow. The double-precision floating arithmetic

is mainly used in the digital signal processing (filters, FFTs)

applications, numerical applications and scientic applications.

The double-precision floating arithmetic operations are the

addition, the subtraction, the multiplication, and the division.

Among the all arithmetic operations, multiplication is widely

used and most complex arithmetic operation. The double-

precision (64-bit) floating point number is divide into three fields,

Sign field, Exponent field and Mantissa field. The most

significant bit of the number is a sign field and it is a 1-bit

length, next 11-bits represents the exponent field of the number

and remaining 52-bits are represents the mantissa field of the

number. The double-precision floating-point multiplier requires

a large 52x52 mantissa multiplications. The performance of the

double-precision floating number multiplication mainly depends

on the area and speed. The proposed work presents a novel

approach to decrease this huge multiplication of mantissa. The

Urdhva Tiryagbhyam technique permits to using a smaller

number of multiplication hardware compared to the

conventional method. In traditional method adding of the partial

products are separately done and it takes more time in

comparision with the proposed metdod. In proposed method the

partial products are concurrently added with the multiplication

operaton and it canreduce the time delay. The double-precision

floating multiplier is implemented using Verilog HDL with Xilinx

ISE tools on Virtex-5 FPGA.

Keywords-Double-precision, Floating point, Multiplication, Vedic,

Urdhva Tiryagbhyam, IEEE-754, Virtex-5 FPGA.

I. INTRODUCTION

The real numbers[2] are represented in binary format

is called as floating point numbers. The floating-point

numbers are IEEE-754 standards split into two types, first one

is binary interchange format and second one decimal

interchange format. The IEEE-754 standard[8] of floating-

point numbers are the single precision (32-bit) format and the

double-precision (64-bit) format.

The fig.1 represents single-precision (32-bit) floating

point number format. In single-precision floating point

number has 32-bits of length. The total 32-bits are divided into

three fields, 31st bit of the number sign (1-bit) field, 30th bit to

23rd bit of the number is exponent (8-bits) field and 22nd bit

to 0thbit of the number is mantissa (23-bits) field.

Fig. 1: Single Precision (32-bit) floating point number format representation.

The fig. 2 represents the double-precision (64-bit)

floating point number format. The double-precision floating

point number has 64-bits of length. The total 64-bits are

divided into three fields, 63rd bit of the number is sign (1-bit)

filed, 62nd to 52nd bit of the number is exponent (11-bits) filed

and 51st to 0th bit of the number is mantissa (52-bits) filed.

Fig. 2: Double Precision (64-bit) floating point number format representation.

The IEEE-754 standard of hardware implementations

for floating point arithmetic operations are very important in

all processors. The multiplication operation is crucial and very
important among the all. The area of the application is main

constraint which should be minimum and provides a greater

speed. The area efficient implementation of floating point

arithmetic operation and thus the efficient implementation of

floating point multiplier are of a major concern.

Most of the high performance computations can be

implemented by using the FPGAs (Field Programmable Gate

Arrays)[7]. The FPGAs supports the high speed, large amount

of logic resources i.e. large slice count and large LUTs and

limited accessible on – board intellectual property (IP)[4]

S Exponent (E) Significant/Fraction/Mantissa

0 23 22 31 30

23 8 1

S Exponent (E) Significant/Fraction/Mantissa

0 52 51 63 62

52 11 1

ISSN: 2278 – 909X

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2418

All Rights Reserved © 2016 IJARECE

cores builds a large set of applications. Now a days FPGAs

can be used in tremendous applications like arithmetical and

scientific computations, digital signal and image processing,

communications, and cryptography computations. The

proposed work is mainly focusing on the double-precision

floating point multiplication implementation on FPGA
platform.

The mantissa multiplication is most important and

essential part for multiplication of the double precision

floating point numbers. This is the main bottleneck of the

performance. The double precision floating point number’s

mantissa is in 53-bits length, and this require a hardware

implementation of 53x53 multipliers, which is very cost

effective and expensive. In this work, one algorithm has

proposed for the double precision floating numbers

multiplication and it can be permits to using a reduced amount

of multiplication accomplish a high speed at comparatively

low hardware resources cost. The prosed method of
multiplication results can be Comparing with Karatsuba

algorithm[1] results. The implementation is mainly concerned

only normalized numbers. The implementation can be done by

using Xilinx ISE synthesis tool, ISIM simulator and Virtex-

5[4](xc5vlx110t-1ff1136) speed grade-1 FPGA platform.

 The paper contains the Introducation in section 1,

section 2 has Proposed Approach of Design, section 3 has

implement the design, section 4 has design results and finally

conclusion of the paper is presenting section 5.

II. PROPOSED APPROACH OF DESIGN

 ThenKaratsuba Multiplication Technique is using to

designing proposed method of multplication. This

multiplication technique is break up the two mantissas into

three parts in fig. 3.

Fig. 3 53-bit mantissa is splitted into 17-bit and 18-bit fractions

The 53-bit mantissa[1] is splitted into 17-bit and 18-

bit signed fractions. The terms w0 and w1 represents the 18-bit

fraction and w2 represents the 17-bit fraction of the one of the

input operand. In the same way x0 and x1represents the 18-bit

fractions and x2 represents 17-bit fraction.

Fig.4 18-bit and 19-bit Multipliers

The designing of 53x53-bit mantissa multiplication is

realized by using the 18-bit multiplier and 19-bit multipliers.

The fig. 4 represents the 18-bit multiplier and 19-bit

multipliers. The multiplier of 18-bit has 1-bit sign bit and 17-

bits fractional bits, the first step is to multiply two 17-bits of

the input operands and generate a partial product p0 then

generate a p1,p2, and p3. In the same way 19-bit multiplier is

also design.

The designing of Vedic multiplier is supports Vedic

multiplication[5] principles (sutras). These principles are

broadly used for the multiplication of two large decimal

numbers. This same sutra can be used to perform

multiplication[5] on two large binary numbers and it shown in

fig. 5.. This proposed method is compatible to design digital

hardware system. The Urdhva Tiryagbhyam technique[4] can
take (2n-1) steps for designing the n-bit multiplier. In fig. 5 4-

bit multiplier can take 7-steps for designing of the multiplier.

Fig.5 Steps involved for 4-bit binary numbers multiplication using Urdhva

Tiryagbhyam Technique.

The 4-bit binary multiplier using Urdhva

Tiryagbhyam technique is shown in fig. 5. The 4-bit multiplier

has 4-bit multiplier as one of the operand and 4-bit

multiplicand is the another operand. The carry resents the

previous state generated carry and it can be added to the

current to get the final product.

1-bit 17-bits

1-bit 17-bits

 18-bits

17x17 Mult P0

1x17 Mult P1

1x17 Mult P2

1x1Mult P3

2-bits 17-bits

2-bits 17-bits

 19-bits

17x17 Mult P0

2x17 Mult P1

2x17 Mult P2

2x2Mult P3

ISSN: 2278 – 909X

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2419

All Rights Reserved © 2016 IJARECE

III. IMPLEMENTATION

Designing of the multiplier for floating-point

numbers carries the operation separately by sign bit, exponent

bits and mantissa bits.

A. Sign and Exponent operations.

The sign and exponent operations are performed in a

straightforward manner. The operand 1 and operand 2 of sign-

bits are carry out the operation of logical XOR.

Sign_out=Sign_in1 Ө Sign_in2

The resultant exponent field of the number is addition of

operand 1’s exponent and operand 2’s exponent and

subtracting the BIAS i.e.

Exp_out=Exp_in1+Exp_in2-1023

For double-precision floating number, the BIAS is equals to

1023 i.e. (211-1-1).

The BIAS of the any floating point number is determined by

(2exponent bits-1-1).

B. Exceptional Case Handling
The IEEE standard as defined by the many exceptional cases

like NaN (Not a Number), INFINITE, ZERO, UNDERFLOW,

OVERFLOW. These are appearing for all the floating point

arithmetic operations. The main operation has been also

combined with the detection of all the exceptional cases, and

determining the final output as per standard. All the

exceptional cases executions are in parallel with the IEEE-754

standard.

The fig. 6 represents the flowchart of the handling of

exceptional cases.

(a)

(b)
Fig. 6 Flowchart for handling of exceptional cases (a) infinite case (b)

OVERFLOW and UNDERFLOW cases

If one of the operand or both of the operands are

infinity; then generate a INFINITY output (with calculate

sign-bit). If denormalized number is one of the input operand,

then the output is zero (w.r.to sign-bit). If the zero or below

zero as output exponent, the displayed output is

UNDERFLOW, and the 11’h7fe (2046 in decimal) is the
output exponent, OVERFLOW as displayed output.

C. Normalization and Rounding

For getting of the the final result after mantissa

multiplication the normalization is mandatory. After the

mantissa multiplication, the resultant number has one extra bit

in most significant bit before the decimal point. Similarly, in

sometimes the same situation will arise after rounding. So,

whenever the additional carry bit is produced after

multiplication or rounding, the resultant product must be right-

shifted for necessary shifts and the corresponding alterations

should be made in exponent also to get the normalized result.

 Rounding is necessary to get back the 106-bit

mantissa multiplication result to 53-bit result only. In this

paper only implemented Round to nearest rounding mode

precised by the IEEE-754 standard and remaining modes can

be implementing as per the application requirement.

Operand=

infinity ?

Operand=

denormalized

number ?

NO

EXP_OUT=11’h7ff

MANT_OUT=0

YES

EXP_OUT=0

MANT_OUT=0

Input

Operand

EXP_OUT

<=zero ?

EXP_OUT=0

MANT_OUT=0

UNDERFLOW=1

EXP_OUT

>11’h7fe ?

EXP_OUT=11’h7ff

MANT_OUT=0

OVERFLOW=1

EXP_OUT=

estimated exponent

MANT_OUT=

Estimated

exponent

OVERFLOW=0

UNDERFLOW=0

YES

NO

YES

NO

Output

Exponent

ISSN: 2278 – 909X

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2420

All Rights Reserved © 2016 IJARECE

IV. RESULTS

The FPGA implemenatation of double precision

floating point multiplier using Urdhva Tiryagbhyam technique

is divided into 18-bit multiplier, 19-bit multiplier and 53-bit

mantissa multiplier. The 53-bit multiplier is designed by

combining the 18-bit and 19-bit multipliers. The 18-bit

multiplier, 19-bit multiplier and 53-bit mantissa multipliers are

in followed figures 7-16.

Fig. 7 Simulation result of 18-bit Urdhva Tiryagbhyam multiplier

The simulation result of 18-bit multiplier using Urdhva

Tiryagbhyam multiplication technique is in fig. 7.Here Ain and

Bin are the two input signals.In this Ain is one of the operand

which is 18-bits in length and Bin is other operand which is

also an 18-bits in length. These two operands are performing a

multiplication operation and produce a 36-bit of result.

INPUTS: Ain[17:0]=18’h00256; Bin[17:0]=18’h00100;

OUTPUT: Y[35:0]=36’h000025600;

Fig. 8 RTL Schematic of 18-bit Urdhva Tiryagbhyam multiplier

The fig. 8 represents the RTL Schematic of 18-bit multiplier

using Urdhva Tiryagbhyam multiplication technique. In this

Ain and Bin are the input operand each one has the 18-bits in

length and output Y is 36-bits in length.

Fig. 9 Simulation result of 19-bit Urdhva Tiryagbhyam multiplier

The simulation results of 19-bit multiplier using Urdhva

Tiryagbhyam multiplication technique is in fig. 9. Ain and Bin
are the two input operand of the 19-bit multiplier and Y is the

output produced by the multiplier.

INPUTS: Ain[18:0]=19’h00019; Bin[18:0]=19’h0000F;

OUTPUT: Y[37:0]=38’h0000000177;

Fig. 10 RTL Schematic of 19-bit Urdhva Tiryagbhyam multiplier

The fig. 10 is the RTL Schematic of 19-bit multiplier using

Urdhva Tiryagbhyam multiplication technique. Ain and Bin are

two operands which are give to input to the multiplier and

output of the multiplier displays as Y which is 38-bits in

length.

Fig. 11 Simulation result of 53-bits mantissa multiplier

Simulation result of 53x53-bit multiplier is in fig. 11. In this

Ain and Bin are the inputs of the multiplier; each one has 53-

bits in length and output Y has 106-bits in length.

INPUTS:Ain[52:0]=53’h01234589756478;

Bin[52:0]=53’h05689745689523;

OUTPUT: Y[105:0]=106’h0000000000000000005B36392F6;

Fig. 12 RTL Schematic of 53-bit mantissa multiplier

The mantissa bits of the double-precision floating point

multiplier have 53-bits. The 53-bit x 53-bit multiplier design is

very difficult, the 53-bits are divided into 18-bits and 19-bits

and design the multipliers. These multipliers are added to get

the 53-bit mantissa multiplier.The fig.12 shows the RTL
Schematic of 53x53-bits multiplier using Urdhva

Tiryagbhyam multiplication technique. Here Ain and Bin are

the input operands of the 53-bit multiplier; Y is the output of

the multiplier.

ISSN: 2278 – 909X

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2421

All Rights Reserved © 2016 IJARECE

Fig. 13 Technology Schematic of 53-bit mantissa multiplier

The fig. 13 shows the technology schematic of the mantissa

bits multiplier. In this the red color wires are interconnecting

wiring network of the circuit. The technology schematic has

adders, subtractors and multipliers. These components
internally through wiring network to build the actual circuit.

Fig. 14 Simulation result of double-precision Urdhva Tiryagbhyam multiplier

The resulting waveform of the double-precision Urdhva

Tiryagbhyam multiplier has two inputs and each one has 64-

bits wide. The two 64-bit input operands are performed

multiplication operation; the resultant has 64-bits length.The

fig. 14 shows the simulation resulting waveform of double-

precision Urdhva Tiryagbhyam multiplier. In this the
exceptional conditions like overflow and underflow are

checked by applying the inputs A[63:0]=000a8954b8963b45

and B[63:0]=0008df5678524569. The output will display all

zeros because of an exceptional case. The exceptional case is

resultant exponent is less than or equal to zero.

Fig. 15 RTL Schematic of double-precision Urdhva Tiryagbhyam multiplier

The RTL Schematic of double-precision Urdhva Tiryagbhyam

multiplier is shown in fig. 15. The inputs are A[63:0], B[63:0],

clock and reset and outputs areY[63:0], underflow and

overflow. A[63:0] has 64-bit of floating point operand and

B[63:0] has 64-bit of another floating point operand. These

two operands are applied to inputs of floating point multiplier.
The Y[63:0] is 64-bit floating point multiplier output.

Overflow and underflow are exceptional conditions occur

during the floating point multiplication.

Fig.16 Technology Schematic of double-precision Urdhva Tiryagbhyam

multiplier

The Technology schematic is in fig. 16 represents the how the

components are internally connected. It also represents how

the circuits are actually arranged in the FPGA.

Table 1: Device utilization summary.

Device

No. of. Slice Registers No. of. Slice LUTs

Karatsuba

Multiplier

Urdhva

Tiryagbhy

am

Multiplier

Karatsuba

Multiplier

Urdhva

Tiryagbhy

am

Multiplier

Spartan-2

(xc2s15-

6cs144)

1877 1970 3599 3607

Spartan-2

(xc2s200-

6fg256)

1878 1970 3599 3607

Spartan-2e

(xc2s600e-

7fg676)

1933 1969 3599 3607

Spartan-3

(xc3s4000l

-4fg900)

797 504 1384 900

Spartan-3a

(xc3s1400

a-5fg676)

798 526 1378 936

Spartan-3e

(xc3s1600

e-5fg484)

798 525 1378 936

Virtex-2

(xc2v6000

-6ff1517)

796 506 1384 902

Virtex-2p

(xc2vpx70

-7ff1704)

796 506 1384 902

Virtex-4

(xc4vlx200

-11ff1513)

798 441 1384 775

Virtex-

5(xc5vlx11

0t-

1ff1136)

390 373 1456 617

Table 1 represents the Device utilization summary. In this the

comparision parameters are number slice registers and number

of slice LUTs. These two parameters are comparision with the

Karatsuba multiplier and Urdhva Tiryagbhyam multiplier. The

devices are changed from Spartan to Virtex the number slice

ISSN: 2278 – 909X

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2422

All Rights Reserved © 2016 IJARECE

registers used by the multipliers are reduced and also number

of slice LUTs are reduced. In this the designinig of the Urdhva

Tiryagbhyam multiplier requires minimum amount of logic

resources to perform double-precision floating point

multiplication operations.

The fig. 17 represents the delay representation of

Karatsuba and Urdhva Tiryagbhyam multipliers. The delay of

the both the multipliers are measured in nano seconds. The

delay of the Karatsuba multiplier is 18.139ns and delay of the

Urdhva Tiryagbhyam multiplier is 15.034ns. The delay of the

Urdhva Tiryagbhyam multiplier is less compared to the

Karatsuaba multiplier so Urdhva Tiryagbhyam multiplier is

fast in comparison with the Karatsuba multiplier.

Fig. 17 Delay representation of Karatsuba and Urdhva Tiryagbhyam

multipliers

The fig. 18 represents the Power consumption of the

Karatsuba multiplier and Urdhva Tiryagbhyam multipliers. In

this X-axis takes frequency in MHzs and Y- axis takes power

in terms of watts. The frequency is from 10MHz to 600MHz

and note down the power at the frequencies. In this fig. 18

observes the Karatsuba multiplier consumes more power in

comparison with the Urdhva Tiryagbhyam multiplier.

Fig. 18 Power consumption of Karatsuba and Urdhva Tiryagbhyam

multipliers

V. CONCLUSION
The FPGA implementation of double-precision floating point

multiplier using Urdhva Tiryagbhyam technique achieved the

high speed and less area consumption compared to the

Karatsuba multiplier and it is fully compatible with the binary

interchange format of IEEE-754 standards.The design handles

the various exceptional conditions like OVERFLOW and

UNDERFLOW .

REFERENCES

[1] Manish Kumar Jaiswal, Ray C.C. Cheung “VLSI Implementation of

Double-Precision Floating Multiplier Using Karatsuba Technique”,

Circuits syst signal process, Springer science business media, vol. 32,

pp. 15-27, July 2013.

[2] Purna Ramesh addanki, Venkata Nagaratna Tilak Alapati and

Mallikarjuna Prasad Avana “An FPGA Based High Speed IEEE-754

Double Precision Floating Point Adder/Subtractor and Multiplier Using

Verilog” International Journal of Advanced Science and Technology,

vol. 52, pp. 61-74, March 2013.

[3] M. al-Ashrafy, A. Salem, W. Anis, “ An Efficient Implementation of

Floating Point Multiplier”, Saudi International Electronics,

Communications and Photonics Conference(SIECPC), pp. 1-5, April

2011.
[4] Sandesh S. Saokar, R. M. Banakar, and Saroja Siddamal, “High Speed

Signed Multiplier for Digital Signal Processing Applications”, IEEE

International Conference on Signal Processing, Computing and Control

(ISPCC), pp. 1-6, March2012.
[5] Devika Jaina, Kabiraj Sethi, and Rutupama Pamda, “Vedic Mathematics

Based Multiply Accumulate Unit ”, International conference on

computational intelligence and communication system, pp 754-757,

2011.
[6] Deena Dayalan, S.Deborah Priya, “High Speed Energy Efficient ALU

Design using Vedic Multiplication Techniques”, ACTEA IEEE pp 600-

603, July 2009.
[7] P. Belanovic and M. Leeser, “A Library of Parameterized Floating-Point

Modules and Their Use”, in 12
th

 International Conference on Field-

Programmable Logic and Applications (FPL-02). London,UK: Springer

Verilog, pp. 657-666, September 2002.
[8] Xilinx, Xilinx floating-point IP core. http://www.xilinx.com.

5

10

15

20

D
e
la

y
 (

n
s)

Type of Multiplier

Karatsuba
Multiplier

Urdhva
Tiryagbhyam
Multiplier

0.8
0.825

0.85
0.875

0.9
0.925

0.95
0.975

1

P
o
w

e
r
 (

W
)

Frequency (MHz)

Karatsuba
Multiplier

Urdhva
Tiryagbhyam
Multiplier

ISSN: 2278 – 909X

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 5, Issue 10, October 2016

2423

All Rights Reserved © 2016 IJARECE

 Author’s Biography

RAMIREDDY VENKATA SURESH received his

B.Tech degree from JNTUA Ananthapur Department of

ECE. He is pursing M.Tech in Srinivasa Institute of
Technology and Science, Ukkayapalli,Kadapa,AP

Mr. K. BALA is currently working as an associate

professer In ECE Department, Srinivasa Instiute of

Technology and science, Ukkayapalli, Kadapa, AP. He
received his M.Tech from Sri Kottam Tulasi Reddy

Memorial college of Engineering

Kondair,Mahaboobnagar, AP.

