ISSN: 2278 — 909X

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 6, Issue 5, May 2017

DEVELOPMENT OF VALIDATION FRAMEWORK FOR
ABIS INTERFACE IN GSM BTS

C.M.Kousar Nazneen, Dr.S.Ravishankar

Abstract— The need for reducing the Operational
Expenditure for the telecom customers has led to the
increased capacity of GSM carriers per BTS hardware. To
satiate the same requirement for the existing customer’s lots
of software optimization was done to increase the GSM
carrier capacity. This paper discuss about how to develop a
framework for testing the complete functionalities of the
Abis Interface. Once the framework is developed new test
case will be created and manually tested. Goal of
Automation is to reduce number of test cases to be run
manually and not eliminate manual testing all together.In
order to extract the packet Information the tools required are
Wireshark and the Splitcap parser.It creates the awareness
of different types of the development, compilation, code
repository tools, testing and their execution flow. By using
this framework it is easy to identify the issues the failure test
cases and the unexpected scenarios within a less time. The
result of this paper include codecoverage report which
shows the efficiency of the framework.

IndexTerms—Abis,Code Coverage ,Splitcap.Wireshark

I. INTRODUCTION

In prior days, the meaning of media transmission is
telephone and telegraph, that allowed the people to
communicate at a distance by voice , and telephone service
was provided by the public switched telephone network
(PSTN)[1]. PSTN uses analog technology, which varies
from one nation to other and from one manufacturer to next
manufacturer.

In the mean time, the requirement for
telecommunication services were remarkably increased.so the
Global System for Mobile communications (GSM)came in to
existence. First GSM specified by 900 MHz range[1]. Later the
GSM adjusted the 1800 and 1900 MHZ band of frequencies[3].
The most used technology for voice and data communication
which is having more than 2 billion subscribers everywhere
through out the world is GSM. For the packet oriented mobile
data service on the communication system General Packet
Radio Service(GPRS) is used[1].

The Abis interface lies within base station
subsystem (BSS) and it represents the dividing line between
the BSC(Base station controller) and the BTS. The BSC and
BTS are connected using leased lines, radio links or
metropolitan area network (MANS). BTS is a component

which performs channel encoding , encryption/decryption and
is comprised of radio transmitters and receivers, antennas etc.

As the technology is developing day by day , GSM
technology allows for one BTS to host up to 16 TRXs. It is
challenging for any company to satisfy customers
requirements and to deliver quality products with less
expenditure. Once the Product is released in the market the
company should maintain the proper quality of service.

So the Framework is produced to test the stand alone
scenarios without implementing hardware. It diminishes the
minimum usage of code and reusability of the code.lt reduces
the dependency on hardware. Debugging is easy. When a test
fails, only the latest changes need to be debugged. With testing
at higher levels, changes made over the span of several days,
weeks or months need to be scanned.

The paper is organized as follows. In Section 2,
tools used for extracting the packest is explained. In Section
3 developing of unit testing framework is described. In
section 4 Codecoverage results of the work are shown.
Finally, the paper is concluded in Section 5, and future
scope is discussed in Section 6.

Il. TOOLS USED FOR EXTRACTING THE PACKETS

Firstly to develop the framework of ABIS,circuit switch
logs and packet switch logs are collected by using live
wireshark Troubleshooting,optimization,security can be
done by using the wireshark tool[2]. It is able to configure a
TCP/IP network. Wireshark have logging tools ,logfiles can
be captured weekly or hourly rate based on the requirement
of network and capability of handling devices as shown in
fig. 2.1.

Destination Protocol
192.168.253.16.
192,168.253.1 Uop
192,168.253.16 UoP
192,168.253.16 Uop
192,168.253.16 Uop
192,168.253.16 Uop
192,168.253.16 Uop
192,168.253.16 Uop
192,168.253.16 Uop
192,168.253.16 UoP
192.168.253.16 uop
192,168.253.16 UoP
10.43.9.247 SCTP
10.43.9.217 SCTP
10.63.26.122 SCTP

\o. Time Source

192.168.253.41
192.168.253.45
192.168.253.41
192.168.253.53
192.168.253.45
192.168.253.57
192.168.253.53
192.168.253.49
192.168.253.57
192.168.253.37
192.168.253.49
192.168.253.37
10.63.26.122
10.63.26.122
10.43.9.217

2.0.000021
3.0.000026
40.000030
50.000035
£.0.000040
7.0.000044
§.0.000049
9.0.000053
100.000061
11.0.000070
12 0.000076
13 0.015658
14 0.015689
15 0.015943
Fig. 2.1 Wireshark Capture of packets

To separate the packet information split cap parser
is used.Based on the IP addresses ,specific port number

400

All Rights Reserved © 2017 IJARECE

ISSN: 2278 — 909X

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

packets are extracted according to our requirement. It splits
one big pcap file into multiple files based on TCP and UDP
sessions, one pcap file per session.Commands for reading
the pcap files from wireshark logs is as shown in fig.2.2.

OPTIONS :
r {input_file> : Set the pcap file to read from.
Use "-» -" to read from stdin
o <output_directory) : Manually specify output directory
: Delete previous output data
p <nr_parallel_sessions)> : Set the numher of parallel sessions to keep in
nemory (default = 1@0@B). More sessions might he needed to split pcap
files from bhusy links such as an Internet hackbone link, this will however
PEqUire more memory
(file_huffer_hytes> : Set the number of hytes to huffer for each
session/output file (default = 10680). Larger huffers will speed up the
process due to fewer disk write operations, bhut will occupy more memory.
{GROUP> : Split traffic and group packets to pcap files hased on <GROUP)>
Possible values for (GROUP)> awve:
flow : Flow, i.e. unidirectional traffic for each 5-tuple,
is grouped together
host : Traffic grouped to one file per host. Most packets
will end up in two files.
: Traffic grouped bhased on host-pairs communicating
: Do not split traffic. Only create ONE output pcap.
: Packets for each session (hi-directional flow) are
grouped
seconds <s> : Split on time, new file after <s> seconds.
packets <{c> : Split on packet count, new file after {c> packets.
ip <IP address to filter on>
port {port numher to filter on)>
y CFILETYPE> : Output file type for extracted data. Possible values
for CFILETYPE> are:

hostpair
nosplit
(default) session

L? : Only store application layer data
(default) pcap : Store complete pcap frames
z + Lazy file creation, i.e. only split if needed
recursive : Search pcap files in sub-directories recursively

Fig. 2.2 Commands of the Split Cap
I1l. UNITTEST FRAMEWORK

The text file can be extracted by writing script in any
language according to our convenience. The test file
obtained is as shown in the fig.3.1.

0208000001013d002004140000a0702116530a2bcf8f097b885c4edfdd8102
0a08000001013d00a004140000a0702116530a2bcf8f097b885c4edfdd8102
0a08000001013d00a0041401014070212caa5dc8d5ba55a277799bd165a94 e
0208000001013d0020041401014070212caa5dc8d5ha55a277799bd165a94 e
0208000001013d00a0041401014070212caa5dc8d5ba55a277799bd165a94 e
0208000001013d00a004140201e070210c0c7el50daes e0f 8bfc8dbdcd7045
0208000001013d00a004140201e070210c0c7el50dae4 e0f 8bfc8dbdcd7045
0a08000001013d00a004140201e070210c0c7el50daed e0f 8bfc8dbdcd7045
0a08000001013d00a00414030280702128874fc56204 5edffca0f92cb644b9
0a08000001013d00a00414030280702128874fc56204 5edffca0f92cb644b9
0a08000001013d00a00414030280702128874fc56204 5edffca0f92cb644b9
0a08000001013d002004140403207021339a8e112b7185a23687c87bbfd8bc
0a08000001013d00a004140403207021339a8e112b7185a23687c87bbfd8bc
0a08000001013d00a004140403207021339a8e112b7185a23687c87bbfd8bc
0a08000001013d00a004140503c07021336d73241ab01bb0880bad2e2d9ad8
0a08000001013d00a004140503c07021336d73241ab01bb0880bad2e2d9ad8
0208000001013d00a004140503c07021336d73241ab01bb0880bad2e2d9ads
0208000001013d00a0041406046070210a5653fe88c8607be0337dc0b09d06
0208000001013d00a0041406046070210a5653fe88c8607be0337dc0b09d06
0208000001013d0020041406046070210a5653fe88c8607be0337dc0b09d06
0a08000001013d00a00414070500702135800f9d49955aa9ac38520f9295¢c5
0a08000001013d00a00414070500702135800f9d49955aa9ac38520f9295¢c5
0a08000001013d00a00414070500702135800f9d49955aa9ac38520f9295¢5
0a08000001013d00a004140805a07021107fd791f3cf5bbe3d7dof2625ce25
0a08000001013d00a004140805a07021107fd791f3cf5bbe3d7dof2625ce25
0a08000001013d00a004140805a07021107fd791f3cf5bbe3d7dof2625ce25
0a08000001013d00a0041409064070211F1eb60aedfafc65cacl32197ads2e
0208000001013d0020041409064070211F1eb60ae4fafc65cacl 32197ad82e
0208000001013d00a0041409064070211F1eb60ae4fafc65cacl32197ads2e
0208000001013d00a004140a06e070213bcf0cb909f905f6adffcee749a64c
0208000001013d00a004140a06€070213bcf0ch909f905f6adffcee749a64c
0208000001013d00a004140a06e070213bcf0cb909f905f6adffcee749a64c
0a08000001013d002004140b0780702111ea05aa8a748ce231el3c5e2b5861
0a08000001013d00a004140b0780702111ea05aag8a748ce231el3c5e2b5861
0a08000001013d00a004140b0780702111ea05aa8az48ce231el3c5e2b5861
0a08000001013d002004140c0820702121929a81112340644a5bb1db24d253
0a08000001013d00a004140c0820702121929a81112340644a5bb1db24d253
0a08000001013d00a004140c0820702121929a81112340644a5bb1db24d253
0a08000001013d00a004140d08c070213d373ade6e6b314ed99062d9b608CS

Fig.3.1Test file of the packets given as input to the
framework.

Test cases are run for different type of codec
modes such as full rate speech and half rate speech[3].The
testfile contaims the information about MUX header,RTP
header and payload bits.

Volume 6, Issue 5, May 2017

For the development of Abis Unit Test Framework[4],
initially we need to compile the Abis as an independent
module in Linux platform without any dependency from the
other modules.

Each line in the text file is considered as individual packet
and given as input to the Abis framework. The characters in
the line are converted to bytes and perform the downlink
operations . The message that we get in the Downlink would
be looped back to the Abis module by calling the Uplink
function .

Once the uplink operations are completed the
message is identified based on the message Id of the
message derived from the message Id field. This message is
stored in a.CSV file output

I'V. CODECOVERAGE

To determine the percentage of code that was executed
during the test process, code coverage is required. GCOV is
used for codecoverage in linux operating system[5].The code
coverage completely depends on the make file. make is a linux
tool which is used for building the program in a simplified way
in which the objects or executables were built. In the single
make file source flags ,linking flags are declared.To measure
the effectiveness of testing efforts gcov is used.To understand
the analysis of code coverage report is required.gcovr is used to
analyse the programs compiled with GCC..It generates a simple
html output as shown in fig.4

Gcov uses two files for profiling. The names of
these files are derived from the original object file by
substituting the file suffix with either .gnu, or .gcda. The
.gcno file is generated when the source file is compiled with
the GCC -ftest-coverage option. It contains information to
reconstruct the basic block graphs and assign source line
numbers to blocks.

The .gcda count data file is generated when a
program containing object files built with the GCC -fprofile-
arcs option is executed.A separate .gcda file is created for
each object file compiled with this option. It contains arc
transition counts, value profile counts, and some summary
information.

Compilation of main.c can be done by using this commands:

$(ARC) $(OBJS) $(CFLAGS)
$(LDFLAGS) -0 $(EXEFILE)

$(MOD_FLAGS)
$(CC) $(CFLAGS) $(MOD_FLAGS) -c¢ -fprofile-arcs -
ftest-coverage $<

Commands to generate gcov html report

mkdir $(OUT_DIR)

gcovr -r $(BASE_DIR) . --html -0

$(OUT_DIR)/coverage.html --html-details

401

All Rights Reserved © 2017 IJARECE

ISSN: 2278 — 909X

International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

GCC Code Coverage Report
Direitory: duplabisFL Exe Tatal Conlags
Date: 2017.0047 Lines: 1182 k) 18y
Logund: i 000 oo o 1 1% B SEMIDS Banches: 6 n 136%
File Lnes
SIS .] MON B eI 2R
LIEY 04 N oz
wefthisty fl.s = BN RI6 WAN MW
ISP, L s ¢ . ——} A% NI AN 20
sl sl === NN %IMe AN WU
Sre/ihsF_g)_bletl, ¢ LU 1 S 1 R4
Al 0 Gl e BON 126i206 3N BN
atsithist) f vl n 2% Niwm SN 60
SibUEL S E.C LT T AR T R 151
L BAGN T/ BSIN MW
sre/thisFl 8| pa.r I W8N 106108 M%7
A 6 sl LR 11N 1 L S 1]
arcdthist il e LA [S UL 1)
SUELL :——:] BN MU daN S
AL e — AN S0/05 203N 5T
srcfthiam_u)_wwelih.c E—— “ikh o BI ATN
LT A U I— (VR TTEH S L (1)
ansdthist gl sl UL 15O T L N 14
SIS/ABLSFL WL Li0:C L LR TR T 1)
A L———1 BIN M WY e
Instinet il 4 E— % i SN 961166
ettt st | 0% THEM 0N lem
s/t inlcitnu 00% i e 0120
festlactisreleté_taty_sine UL 11 T i

Fig. 4.1 CodeCoverage report

ACKNOWLEDGEMENT

I sincerely thank Electronics and Communication
Engineering Department of R.V. College of Engineering,
Bangalore for providing the opportunity and guidance for
research work.

REFERENCES

[11 3GPP TR
Specifications”.

[21 Wolf-Bastian Pottner, L.W. IEEE 802.15.4 packet
analysis with Wireshark and off-the-shelf hardware.

[3] 3GPP. Full Rate Speech Transcoding. Series 06: GSM Codecs
Specification 06.10, European Telecommunications Standards
Institute, Dec 1999.

[4] ITU-T recommendation G. 1000 (2001), Communication quality of
service: A framework and definition

[5] Code Coverage Analysis http: //www.bullseye.com/coverage.html

21.905: “Vocabulary for 3GPP

C.M.Kousar Nazneen

received her B.Tech degree in Electronics & Communication
Engineering from KSRM COLLEGE OF ENGINEERING
(JNTU, Anantapur) kadapa, A,P., India in 2014 and is shortly
finishing her M.Tech degree in Communication Systems from
R.V. College of Engineering (VTU,Belgaum), Bangalore,
Karnataka, India. Her interest areas are advanced wireless
communication, digital signal processing.

Volume 6, Issue 5, May 2017

O Prof. Dr. S Ravi Shankar

entered the field of education in the year 2004 after 32 years
of exemplary service in the R&D industry , He earned his
Bachelor’s degree in Engineering (Electronics) from BITS
PILANI and Masters in Technology from 11T karaghpur in the
year 1985. He also has a ph.D from IIT madras in Microwave
Communication & Radar .He took premature retirement from
the Qualcomm in the year 2004 and entered the field of
education. He is the professor. (Electronics and
Communication) in RV Engineering College in Bangalore.

Affiliated to VTU, Belgaum. His interest areas are
Electro Magnetics, Wireline & wireless broadband,
Underwater Communication.

402

All Rights Reserved © 2017 IJARECE

