Health Monitoring of Highway Bridges Using Wireless Sensor Networks

Mr. Vishal Chandankhede

Abstract- In Industry various applications use the network system. The wireless sensor networks are used widely and becoming cost effective now days. One of the useful application is health monitoring of railway and highway which plays an important role in transportation. Many bridges in world collapse due to deteriorating health, those factors must be monitored in order to avoid this collapse. This paper proposes bridge monitoring system using wireless sensor networks. The proposed system consists of multiple sensors to monitor the bridge condition continuously i.e. Accelerometer to detect the jerks in the bridge or in pillar, flex sensor to detect the bend or orientation in the bridge, load cell to detect the overload on the bridge. This data from the sensors will be processed by Arduino controller and is transferred to the receiver node at the management center using the transmitter node at the transmitter end whenever the fault occurs. Wireless ZigBee module is used as a wireless trans-receiver in this paper. Raspberry pi is used to monitor the received data which can also store the database in it. The GSM alert message is also sent to the operator along with the exact location where fault occurred in bridge. The proposed system can be used efficiently with low cost.

Keywords: Arduino, Accelerometer, flex sensor, load cell, wireless sensor node, alert system using raspberry pi.

I. INTRODUCTION

Transportation plays a major role in today’s life. In that bridge is one of the important transportation infrastructure for social and economic activities of country which has a long river. There are five long rivers in Indonesia where a long suspension bridges are used as transportation over those rivers. The construction of such long bridges must be very strong and structural health status monitoring for such bridges is necessary. Bridges faces structural deficiency because of overloading, ageing, bending and many other improper maintenances. There are more than 89000 bridges are there in world, few of them are managed by regional management, few of them are managed by national management, rest of them are long span suspension bridges.

The fact is these bridges are monitored manually for every 5 years by the management system. And few of them are located in remote area where it is difficult to manage. Because of this random inspection for every few years it is difficult to get the bridge status in the required time. Due to lack of continuous monitoring bridge may collapse. In order to overcome this problem, it need a system which monitors the bridge status continuously and gives the proper alert to the operator at correct time.

At present, visual inspections are becoming most common for the structural health monitoring of a bridge [1]. These basic techniques are failed to get the bridge safety because it’s not providing the enough knowledge to avoid bridge collapsing [2]. As the wireless sensor networks are evolving now a day, they are becoming cost effective and user friendly. Recent studies were developed wireless sensor nodes and platforms for health monitoring of a bridge [3]. Among others, used an RFID based wireless sensors for energy conservation during bridge monitoring system [4]. Also cable-stayed bridge status monitoring using smart sensor networks and using deployment evaluation techniques are described in [5]. Latter system consist of Development of a Prioritization Methodology for reducing data cleansing [6]. Also other system was developed which consist of micro-electro mechanical systems, micro controllers, cloud monitoring and fuzzy logic for data analyzing [7].

Automatic bridge monitoring system using wireless sensor network is proposed in order to replace the above mentioned systems. The system collects the data from sensors and the status is collected by the controller and is transferred to wireless node. This data at transmitter node is sent to the receiver node and is analyzed by the raspberry-pi. Analyzed data is sent to the management center and an alert message is sent to the operator mobile number.

The proposed system consists of three sensors to monitor continuously for the bridge status, a PIC18 controller to analyze the monitored data and a CC2500 node to transfer the analyzed data to the receiver node at management center. Raspberry pi also placed at receiver side to store the database of bridge status and an appropriate alert is sent to operator with exact location of fault occurred.

II. SYSTEM BUILDING BLOCKS

To design the wireless bridge monitoring system, it should use cost effective components. The proposed system consists of 3 main functional blocks.
a) Sensor Network Location and Wireless Transmission.

b) Intermediate Module.

c) Management Centre.

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Model name</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller</td>
<td>PIC18</td>
<td>Microchips PIC18 40-pin Controller.</td>
</tr>
<tr>
<td>RF module</td>
<td>CC-2500</td>
<td>2.4GHz RF Transceiver Module for communication link between WSN.</td>
</tr>
<tr>
<td>3-axis Accelerometer</td>
<td>MS3A001</td>
<td>Structures acceleration in 3-axis Measurements.</td>
</tr>
<tr>
<td>Flex sensor</td>
<td>Spectra symbol 00216</td>
<td>For sensing the bending in a Bridge.</td>
</tr>
<tr>
<td>Load cell</td>
<td>Model: CZL601</td>
<td>Overload detection</td>
</tr>
<tr>
<td>Others</td>
<td>Raspberry pi</td>
<td>For alert system</td>
</tr>
<tr>
<td></td>
<td>External power</td>
<td>5V Power supply</td>
</tr>
</tbody>
</table>

A. Sensor Network Location and Wireless Transmission.

The wireless transmission system consists of 3 different sensors i.e. Load cell, 3-axis accelerometer, flex sensor which are interfaced with PIC18 microcontroller and the CC-2500 RF module which is again interfaced with controller. This entire setup will be mounted to bridge.

Whenever jerks occur in bridge due to over speed of vehicle or because of improper construction or it may be any other reason. At this moment the accelerometer will sense the jerks and gives the acceleration values to the PIC controller. In the same way bridge bending may also happen due to structural defects. In this case flex sensor is used to detect the bending. Also because of overload of a vehicle, bridge may lose its stability. So load cell is used to detect the weight of a vehicle. These three values from 3 sensors are given to PIC ADC pins and transfers the data to intermediate module through UART TX pin of controller to the cc22500 RF module.

B. Intermediate Module

CC-2500 receiver module which will be receiving the continuous data sent by transmitter module. This received data will be transferred to pi module which is already interfaced with CC-2500 receiver module. Here this pi will monitor or analyses the data and sends an alert to the management center whenever parameters exceeds threshold values.

A clear information about the error occurred will be sent to management center by PI through LAN connection. In case operator is not present at management center after few time pi will send a SMS to operator’s mobile number along with location of error occurred.

C. Management Centre.

The alert with complete error information will be sent by Raspberry pi through LAN. The pop-up will appear on computer screen in management center. Until operator clicks OK button in pop-up, intermediate center won’t get any acknowledgement from management center and it send an SMS to operator mobile number.
III. FLOW CHART

The Sensor network location and wireless transmission

When model is powered up, sensor values are sent to ADC pins of PIC controller. DC converts analog values of sensor to digital and sends to CC2500 RF module through UART TX pin of controller. When data exceeds the threshold values the gate will be closed in either side of the bridge in order to stop the vehicles.

B. Intermediate module

CC2500 receiver gets the data from transmitter and gives the same values to raspberry pi. Whenever parameter exceeds threshold values it sends an alert to the management center using LAN connection. Once the operator receives and opens the alert pop-up, it sends back an acknowledgement to intermediate module. In the case of no acknowledgement pi send an SMS to operator mobile number using GSM.

C. Management center

Receives alert with all the details of fault and location of fault. Sends back an acknowledgement when operator open alert message and content will be stored in database.
IV. CONCLUSION

This paper proposed a bridge monitoring system using a wireless sensor network. The system uses a sensor network for data collection and RF transceiver module for communication link between the bridge and management center. The obtained results were matched with acceptable error and that did not change the status of the bridge. The proposed system is low cost and easy to use compared with other similar systems.

Acknowledgment

I would like to thank Associate Professor Mrs. Shubhangi Borkar Department of Electronics and Communication Engineering for her perpetual support to prepare for this work.

REFERENCES


