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Abstract -In this paper, we introduce an effective architecture 

for the implementation of a delayed least mean square adaptive 

filter. For accomplishing lower adaptation delay and delay 
power efficient architecture, we utilize a novel partial product 

generator and propose a technique for advanced adjusted 

pipelining over the time consuming combinational blocks of the 

structure. From synthesis comes about, we find that the 

proposed configuration offers less delay and power product 

        Additionally, we have proposed the Kogge Stone adder is a 

parallel prefix shape carry look-ahead adder. The Kogge Stone 

adder takes more area to implement than the Brent Kung adder, 

yet has a lower fan-out at each stage. 

 

Keywords: adaptive filter, least mean square(LMS) algorithms, 
ripple carry adder, kogge stone adder 

I INTRODUCTION 

           The least mean square (LMS) adaptive filter is the most 

famous and most generally utilized adaptive filter, in view of its 

simplicity as well as in view of its satisfactory convergence 

performance. The direct-form LMS adaptive filter includes a 

long critical path because of an inner-product computation to 

acquire the filter output. The critical path is required to be 

diminished by pipelined implementation when it transcend the 

desired sample period. Since the normal LMS algorithm does 

not bolster pipelined usage on account of its recursive direct, it 

is changed as per a form called the delayed LMS (DLMS) 
algorithm, which allow pipelined usage of the filter. 

           A great deal of work has been done to implement the 

DLMS algorithm in systolic designs toincreases the maximum 

usable frequency in any case, they include an adaptation delay 

of ∼N cycles for filter length N, which is high for extensive 

order filter. Since the convergence performance reduces 

significantly for a large order delay. A transpose-form LMS 

adaptive filter is recommended in High speed FPGA-based 

implementations of delayed LMS filters, where the filter output 

at any moment depends on the delayed version of weights and 
the number of delays in An effective systolic architecture for 

the DLMS adaptive filter and its applications weights change 

from 1 to N. Van and Feng have proposed systolic architecture, 

where they have utilized generally large processing elements 

(PEs) for accomplishing a lower adaptation delay with the 

critical path of one MAC operation.  

          Ting et al. have proposed a fine-grained pipelined design 

to constrain the critical path to the maximum of one addition 

time, which support high sampling frequency, however includes 

a considerable measure of area overhead to pipelining 

furthermore, higher power utilization than in , because of its 

huge number of pipeline latches. Further exertion has been 
made by Meherand Maheshwari to diminish the number of 

adaptation delays. Meher and Park have proposed a 2-bit 

multiplication cell, and utilized that with a capable adder tree 

for pipelined inner-product computation to keep the critical path 

and silicon area without expanding the number of adaptation 

delays.  

The current work on the DLMS adaptive filter having large 
adaptation delay, in spite of the fact that they specifically 

influence the convergence performance, especially because of 

the recursive behavior of the LMS algorithm. Consequently, 

large adaptation delay issues are with the energy utilization. The 

proposed design is observed to be moreproficient as far as the 

power-delay product (PDP) contrasted with the existing 

structures.  

       In Section II, we survey the DLMS algorithm, and in 

Section III, we describe the proposed optimized architecture for 

its usage. Section IV discuss simulation studies of the 

convergence of the algorithm. In Section V, we consider the 
synthesis of the proposed architecture and comparison with the 

existingarchitectures. Conclusions are given in Section V 

 

II. REVIEW OF DELAYED LMS ALGORITHM 

The weights of LMS adaptive filter throughout the nth iteration 

are updated by the accompanying conditions [2]: 

 

Wn+1=wn+μ·en·xn(1a) 

Where 

en = dn – yn 

and 

yn=wT
n·xn(1b) 

 

where the input vector xn, and the weight vector wn at the nth 

iteration are, separately, given by 

 
xn = [xn, xn-1, . . . , xn-N+1]

T 

 

wn = [wn(0),wn(1), . . . ,wn(N − 1)]T 

 

dn is the desired response, yn is the filter output, and en indicates 

the error computed amid the nth iteration. μ is the step size, and 

N is the number of weights utilized as a part of the LMS 

adaptive filter. On account of pipelined design with m pipeline 

stages, the error en winds up plainly accessible after m cycles, 

where m is known as the "adaptation delay." The DLMS 

algorithm consequently utilizes the delayed error en-m, i.e., the 
error relating to (n - m)th iteration for updating the present 

weight rather than the current most error. The weight-update 

condition of DLMS adaptive filter is given by 

 

wn+1 = wn+ μ · en-m · xn-m.              (2) 

 

The block diagram of the DLMS adaptive filter is appeared in 

Fig. 1, where the adaptation delay of m cycles adds up to the 

delay presented by the entire of adaptation filter structure 

comprising of finite impulse response (FIR) filtering and the 

weight-update process. It is appeared in that the adaptation 
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delay of traditional LMS can be decomposed into two parts: one 

part is the delay presented by the pipeline stages in FIR 

filtering, and the other part is because of the delay associated 

with pipelining the weight updated process. In light ofsuch 

decomposition of delay, the DLMS adaptation delay can be 

actualizeddecomposition of delay, the DLMS adaptation delay 

can be actualized by a structure appeared in Fig. 2.Expecting 

that the delay of computation 

Fig. 

1.Construction of the conventional delayed LMS adaptive filter. 

 
 

Fig. 2.Construction of the modifieddelayed LMS adaptive filter. 

 

of error is n1 cycles, the error figured by the structure at the nth 

cycle is en-n1, which is utilized with the input samples delayed 
by n1 cycles to produce the weight-increase term. The weight-

update condition of the modified DLMS algorithm is given by 

wn+1= wn+μ∙ en-n1∙ xn-n1 (2a) 

 

where 

 

en-n1=dn-n1-yn-n1                                (2b)  

 

also, 

 

yn=wT
n-n2·xn                                    (2c) 

 

We notice that, throughout the weight update, the error with n1 
delays is utilized, while the filtering unit utilizes the weights 

delayed by cycles. The modified DLMS algorithm decouples 

calculations of the error-computation and the weight-update 

block and enablesus to perform ideal pipelining by feed forward 

cut-set retiming of both these areas independently to limit the 

number of pipeline stages and adaptation delay. The adaptation 

filter with various n1 and n2 are simulated for a system 

distinguishing proof issue. 

III. PROPOSED ARCHITECTURE 
As appeared in Fig. 2, there are two fundamental main blocks in 

the adaptive filter design: 1) the error computation block and 2) 

weight update block 

In this Section, we talk about the design procedure of the 

proposed structure to limit the adaptation delay in the error 

computation block, come after by the weight-update block 

 

A. Pipelined Structure of the Error-Computation Block 

The proposed structure for error-computation unit of an N-tap 

DLMS adaptive filter is appeared in Fig. 3. It comprises of N 
number of 2-b partial product generators (PPG) comparing to N 

multipliers and a group of L/2 binary addertrees, come after by 

a single shift–add tree. Each sub block is portrayed in detail 

 

1) Structure of PPG: The structure of each PPG is appeared in 

Fig. 4. It comprises of L/2 number of 2-to-3 decoders and a 

similar number of AND/OR cells (AOC).1 Each of the 2-to-3 

decoders takes a 2-b digit (u1u0) as input and produces three 

output b0 = u0∙ 𝑢 1, b1 = 𝑢 0∙ u1, and b2 = u0 · u1, to such an extent 

that b0 = 1 for (u1u0) = 1, b1 = 1 for (u1u0) = 2, and b2 = 1 for 
(u1u0) = 3. The decoder output b0, b1 and b2 alongside w, 2w, 

and 3w are sustained to an AOC, where w, 2w, and 3w are in 2's 

complement representation and sign-reached out to have (W + 

2) bits each. To take care of the indication of the input samples 

while figuring the partial product be consistent with the most 

significant digit (MSD), i.e., (uL-1uL-2) of the input sample, the 

AOC (L/2 − 1) is sustained with  w, −2w, and −w as input since 

(uL-1uL-2) can have four conceivable values 0, 1, −2, and −1. 

 

2) Structure of AOCs: The structure and function of an AOC 

are represented in Fig. 6. Each AOC comprises of three AND 
cells and two OR cells. The structure and function of AND cells 

and OR cells are represented by Fig. 5(b) and (c), individually. 

Each AND cell takes an n-bit input D and a single bit input b, 

and comprises of n AND doors. It disperses all the n bits of 

input D to its n AND gates as one of the inputs. The other input 

all the n AND gates are encouraged with the single-bit input b. 

As appeared in Fig. 5(c), each OR cell likewise takes a couple 

of n-bit input words and has n OR gates. A couple of bits in a 

similar piece position in B and D is bolstered to the same OR 

gates. The output of an AOC is w, 2w, and 3w comparing to the 

decimal values 1, 2, and 3 of the 2-b input (u1u0), individually. 
The decoder alongside the AOC performs a multiplication of 

input operand w with a 2-b digit (u1u0), to such an extent that 

the PPG of Fig. 5 performs L/2 parallel multiplication of input 

word w with a 2-b digit to create L/2 partial product of the 

product word wu. 

 

3) Structure of Adder Tree: Based on, we need have 

performed the shift-add operation on the partial products of 

each PPG independently to get the product value and after that 

included all the N product values to figure the desired inner 

product. Although, the shift-add operation to acquire the 

product value expands the word length and subsequently 
increments the adder size of N − 1 additions of the product 

values. 

To keep away from such increment in word size of the adders, 

we include all the N partial products of a similar place an 

incentive from all the N PPGs by one adder tree. All the L/2 

partial products created by each of the N PPGs are therefore 

included by (L/2) binary adder trees. The output of the L/2
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Fig:3 Proposed structure of the error computation block 

 

 
Fig : 4 Proposed structure of the PPG. AOC remains for AND/OR 

 

Adder trees are then included by a shift-add tree as indicated 

by their place values. Each of the binary adder trees require 
log2N stages of adders to include N partial products, and the 

shift–add tree requires log2 L − 1 stages of adders to include 

L/2 output of L/2 binary adder trees. 

            The addition scheme for the error-computation block 

for a four-tap filter and input word size L = 8 is appeared in 

Fig. 8. For N = 4 and L = 8, the adder network requires four 

binary adder trees of two stages each and a two-stage shift–

add tree. In this figure, we have demonstrated all conceivable 

locations of pipeline latches by dashed lines, to diminish the 

critical path to one addition time. The last adder in the shift–

add tree add to the maximum delay to the critical path. Based 

on that perception, we have recognized the pipeline latches 

 

 

 

 

 
 

 

that don't contribute fundamentally to the critical path and 

would bar those with no observable increment of the critical 

path. The location of pipeline latches for filter lengthsN = 8, 

16, and 32 and for input size L = 8. The pipelining is 

performed by a feed forward cut-set retiming of the error 

computation block. 

 

3A.Structure of adder: The proposed structure for adder tree 

and shift-add tree both are utilizing adder. In that adder place 
we are placing Ripple carry adder and Kogge stone adders. 

Kogge stone adder has high performance and lower delay 

compared with Ripple carry adder. The Kogge Stone adder is a 

parallel prefix frame carry look-ahead adder.  
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Fig. 5. Structure and function of AND/OR cell. Binary operators .and 
+ in (b) and (c) are implemented utilizing AND as well as OR gates, 
separately. 

 

 

Fig 6: 8bit ripple carry adder 

 

 

Fig 7: kogge stone parallel prefix adder 

 

B. Pipelined Structure of the Weight-Update Block 

The proposed structure for the weight-update block is 

appeared in Fig.9. It performs N multiply- accumulate 

operations of the form (μ × e) × xi + wi to update N filter 

weights. The step size μ is taken as a negative power of 2 to 

understand the multiplication with as of late accessible error 

just by a shift operation. Each of the MAC units in this way 

performs the multiplication of the shifted value of error with 

the delay input samples xi come after by the addition with the 

comparing old weight values wi. All the N multiplications for 

the MAC operations are performed by N PPGs, come after by 

N shift add trees. Each of the PPGs produces L/2 partial 

product relating to the product of the as of late shifted error 

value μ × e with L/2, the number of 2-b digits of the input 

word xi , where the sub expression 3μ×e is shared within the 

multiplier. Since the scaled mistake (μ×e) is multiplied with all 

the N delayed input values in the weight-update block, this sub 

expression can be shared over every one of the multipliers 

also. The last output of MAC units constitute the desired 
updated weights to be utilized as inputs to the error-

computation block as well as the weight-updated block for the 

following iteration. 

 

C. Adaptation Delay 
As appeared in Fig. 2, the adaptation delay is divided into n1 

and n2. The error-computation block produces the delayed 

error by n1-1 cycles as appeared in Fig. 4, which is boost to the 

weight-updated block appeared in Fig. 9 in the wake of scaling 

by μ; at that point the input is delayed by 1 cycle before the 

PPG to make the total delay presented by FIR filtering be n1.  

 

 

 

 

 

 

In Fig.9, the weight-updated block produce wn-1-n2, and the 

weights are delayed by n2+1 cycles. Although, it should be this 

prompts significant reduction of the adder complexity. noticed 

that the delay by 1 cycle is because of the latch before the 

PPG, which is involved into the delay of the error computation 

block, i.e., n1. Consequently, the delay produced in the weight 

updated block moves toward becoming n2. In the event that the 

location of pipeline latches are chosen as inTable I, n1moves 
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toward becoming 5,where three latches are in the error 

computation block, one latches is after the subtraction in Fig. 

3, and the other latch is before PPG in Fig. 9. Additionally, n2 

is set to 1 from a latch in the shiftadd tree in the weight-

updated block. 

 

 

Fig. 8. Adder construction of the filtering unit for N = 4 and L = 8.  
 

 
Fig: 9. Proposed structure of the weight-updated block 

 

TABLE I 

 

LOCATION PIPELINE LATCHES FOR L=8 
 

N 
Error-Computation Block Weight-Update Block 

Adder Tree Shift-add tree Shift-add tree 

8 Stage-2 Stage-1 and 2 Stage-1 

 

 

 

IV. SIMULATION RESULTS 

The proposed designs were also implemented on the field 

programmable gate array (FPGA) platform of Xilinx devices. 

The number of slices (NOS) and the maximum usable 

frequency (MUF) using two different devices of Spartan-3A 

(XC3SD1800A-4FG676) and Virtex-4 (XC4VSX35-10FF668)  

 

 

 

 

 

 

 

are listed in Table II. The proposed design-II, after the 
pruning, offers nearly 11.86% less slice-delay product, which 

is calculated as the average NOS/MUF, for N = 8, 16, 32, and 

two devices. 
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Simulation waveform:1 for PPG structure 

 
Simulation waveform:2 for Error-Computation Block structure 

 
Simulation waveform:3 for Weight-Updated Block structure 
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Simulation waveform  :4 for Adaptive filter using ripple carry 

adder 

 

Simulation waveform  :5 for Adaptive filter using kogge stone 

adder 

 

TABLE II 

 
FPGA IMPLEMENTATION OF PROPOSED DESIGNS FOR L=8 AND 

N=8 

 Ripple carry adder Kogge stone adder 

NOS LUTs 1809 1034 

NOS Registers 116 102 

Delay 8.200ns 5.706ns 

NOS stands for the number of slices 

 

V. Conclusion: 

We present a delay-power effective low adaptation delay 

design of LMS adaptive filter. We utilized a novel PPG for 

effective design of general multiplication and inner product 

computation by regular sub expression sharing. In addition, we 

have proposed kogge stone adder structure for effective 

addition scheme for inner-product computation to reduce the 

adaptation delay and to reduce the critical path to help high 

input sampling rates. Beside this, we proposed a methodology 

for advanced balanced pipelining over the time consuming 

blocks of the structure to decrease the adaptation delay and 
power utilization, too. The proposed structure included the less 

adaptation delay comparing with the existing structures. 
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