
ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 6, Issue 8, August 2017

931

All Rights Reserved © 2017 IJARECE

Delay Power Efficient DLMS Adaptive Filter With Low

Adaptation Delay Using Kogge Stone Adder

Swapnakumari Peethala, Rajasekhar Turaka

Abstract -In this paper, we introduce an effective architecture

for the implementation of a delayed least mean square adaptive

filter. For accomplishing lower adaptation delay and delay
power efficient architecture, we utilize a novel partial product

generator and propose a technique for advanced adjusted

pipelining over the time consuming combinational blocks of the

structure. From synthesis comes about, we find that the

proposed configuration offers less delay and power product

 Additionally, we have proposed the Kogge Stone adder is a

parallel prefix shape carry look-ahead adder. The Kogge Stone

adder takes more area to implement than the Brent Kung adder,

yet has a lower fan-out at each stage.

Keywords: adaptive filter, least mean square(LMS) algorithms,
ripple carry adder, kogge stone adder

I INTRODUCTION

 The least mean square (LMS) adaptive filter is the most

famous and most generally utilized adaptive filter, in view of its

simplicity as well as in view of its satisfactory convergence

performance. The direct-form LMS adaptive filter includes a

long critical path because of an inner-product computation to

acquire the filter output. The critical path is required to be

diminished by pipelined implementation when it transcend the

desired sample period. Since the normal LMS algorithm does

not bolster pipelined usage on account of its recursive direct, it

is changed as per a form called the delayed LMS (DLMS)
algorithm, which allow pipelined usage of the filter.

 A great deal of work has been done to implement the

DLMS algorithm in systolic designs toincreases the maximum

usable frequency in any case, they include an adaptation delay

of ∼N cycles for filter length N, which is high for extensive

order filter. Since the convergence performance reduces

significantly for a large order delay. A transpose-form LMS

adaptive filter is recommended in High speed FPGA-based

implementations of delayed LMS filters, where the filter output

at any moment depends on the delayed version of weights and
the number of delays in An effective systolic architecture for

the DLMS adaptive filter and its applications weights change

from 1 to N. Van and Feng have proposed systolic architecture,

where they have utilized generally large processing elements

(PEs) for accomplishing a lower adaptation delay with the

critical path of one MAC operation.

 Ting et al. have proposed a fine-grained pipelined design

to constrain the critical path to the maximum of one addition

time, which support high sampling frequency, however includes

a considerable measure of area overhead to pipelining

furthermore, higher power utilization than in , because of its

huge number of pipeline latches. Further exertion has been
made by Meherand Maheshwari to diminish the number of

adaptation delays. Meher and Park have proposed a 2-bit

multiplication cell, and utilized that with a capable adder tree

for pipelined inner-product computation to keep the critical path

and silicon area without expanding the number of adaptation

delays.

The current work on the DLMS adaptive filter having large
adaptation delay, in spite of the fact that they specifically

influence the convergence performance, especially because of

the recursive behavior of the LMS algorithm. Consequently,

large adaptation delay issues are with the energy utilization. The

proposed design is observed to be moreproficient as far as the

power-delay product (PDP) contrasted with the existing

structures.

 In Section II, we survey the DLMS algorithm, and in

Section III, we describe the proposed optimized architecture for

its usage. Section IV discuss simulation studies of the

convergence of the algorithm. In Section V, we consider the
synthesis of the proposed architecture and comparison with the

existingarchitectures. Conclusions are given in Section V

II. REVIEW OF DELAYED LMS ALGORITHM

The weights of LMS adaptive filter throughout the nth iteration

are updated by the accompanying conditions [2]:

Wn+1=wn+μ·en·xn(1a)

Where

en = dn – yn

and

yn=wT
n·xn(1b)

where the input vector xn, and the weight vector wn at the nth

iteration are, separately, given by

xn = [xn, xn-1, . . . , xn-N+1]

T

wn = [wn(0),wn(1), . . . ,wn(N − 1)]T

dn is the desired response, yn is the filter output, and en indicates

the error computed amid the nth iteration. μ is the step size, and

N is the number of weights utilized as a part of the LMS

adaptive filter. On account of pipelined design with m pipeline

stages, the error en winds up plainly accessible after m cycles,

where m is known as the "adaptation delay." The DLMS

algorithm consequently utilizes the delayed error en-m, i.e., the
error relating to (n - m)th iteration for updating the present

weight rather than the current most error. The weight-update

condition of DLMS adaptive filter is given by

wn+1 = wn+ μ · en-m · xn-m. (2)

The block diagram of the DLMS adaptive filter is appeared in

Fig. 1, where the adaptation delay of m cycles adds up to the

delay presented by the entire of adaptation filter structure

comprising of finite impulse response (FIR) filtering and the

weight-update process. It is appeared in that the adaptation

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 6, Issue 8, August 2017

932

All Rights Reserved © 2017 IJARECE

delay of traditional LMS can be decomposed into two parts: one

part is the delay presented by the pipeline stages in FIR

filtering, and the other part is because of the delay associated

with pipelining the weight updated process. In light ofsuch

decomposition of delay, the DLMS adaptation delay can be

actualizeddecomposition of delay, the DLMS adaptation delay

can be actualized by a structure appeared in Fig. 2.Expecting

that the delay of computation

Fig.

1.Construction of the conventional delayed LMS adaptive filter.

Fig. 2.Construction of the modifieddelayed LMS adaptive filter.

of error is n1 cycles, the error figured by the structure at the nth

cycle is en-n1, which is utilized with the input samples delayed
by n1 cycles to produce the weight-increase term. The weight-

update condition of the modified DLMS algorithm is given by

wn+1= wn+μ∙ en-n1∙ xn-n1 (2a)

where

en-n1=dn-n1-yn-n1 (2b)

also,

yn=wT
n-n2·xn (2c)

We notice that, throughout the weight update, the error with n1
delays is utilized, while the filtering unit utilizes the weights

delayed by cycles. The modified DLMS algorithm decouples

calculations of the error-computation and the weight-update

block and enablesus to perform ideal pipelining by feed forward

cut-set retiming of both these areas independently to limit the

number of pipeline stages and adaptation delay. The adaptation

filter with various n1 and n2 are simulated for a system

distinguishing proof issue.

III. PROPOSED ARCHITECTURE
As appeared in Fig. 2, there are two fundamental main blocks in

the adaptive filter design: 1) the error computation block and 2)

weight update block

In this Section, we talk about the design procedure of the

proposed structure to limit the adaptation delay in the error

computation block, come after by the weight-update block

A. Pipelined Structure of the Error-Computation Block

The proposed structure for error-computation unit of an N-tap

DLMS adaptive filter is appeared in Fig. 3. It comprises of N
number of 2-b partial product generators (PPG) comparing to N

multipliers and a group of L/2 binary addertrees, come after by

a single shift–add tree. Each sub block is portrayed in detail

1) Structure of PPG: The structure of each PPG is appeared in

Fig. 4. It comprises of L/2 number of 2-to-3 decoders and a

similar number of AND/OR cells (AOC).1 Each of the 2-to-3

decoders takes a 2-b digit (u1u0) as input and produces three

output b0 = u0∙ 𝑢 1, b1 = 𝑢 0∙ u1, and b2 = u0 · u1, to such an extent

that b0 = 1 for (u1u0) = 1, b1 = 1 for (u1u0) = 2, and b2 = 1 for
(u1u0) = 3. The decoder output b0, b1 and b2 alongside w, 2w,

and 3w are sustained to an AOC, where w, 2w, and 3w are in 2's

complement representation and sign-reached out to have (W +

2) bits each. To take care of the indication of the input samples

while figuring the partial product be consistent with the most

significant digit (MSD), i.e., (uL-1uL-2) of the input sample, the

AOC (L/2 − 1) is sustained with w, −2w, and −w as input since

(uL-1uL-2) can have four conceivable values 0, 1, −2, and −1.

2) Structure of AOCs: The structure and function of an AOC

are represented in Fig. 6. Each AOC comprises of three AND
cells and two OR cells. The structure and function of AND cells

and OR cells are represented by Fig. 5(b) and (c), individually.

Each AND cell takes an n-bit input D and a single bit input b,

and comprises of n AND doors. It disperses all the n bits of

input D to its n AND gates as one of the inputs. The other input

all the n AND gates are encouraged with the single-bit input b.

As appeared in Fig. 5(c), each OR cell likewise takes a couple

of n-bit input words and has n OR gates. A couple of bits in a

similar piece position in B and D is bolstered to the same OR

gates. The output of an AOC is w, 2w, and 3w comparing to the

decimal values 1, 2, and 3 of the 2-b input (u1u0), individually.
The decoder alongside the AOC performs a multiplication of

input operand w with a 2-b digit (u1u0), to such an extent that

the PPG of Fig. 5 performs L/2 parallel multiplication of input

word w with a 2-b digit to create L/2 partial product of the

product word wu.

3) Structure of Adder Tree: Based on, we need have

performed the shift-add operation on the partial products of

each PPG independently to get the product value and after that

included all the N product values to figure the desired inner

product. Although, the shift-add operation to acquire the

product value expands the word length and subsequently
increments the adder size of N − 1 additions of the product

values.

To keep away from such increment in word size of the adders,

we include all the N partial products of a similar place an

incentive from all the N PPGs by one adder tree. All the L/2

partial products created by each of the N PPGs are therefore

included by (L/2) binary adder trees. The output of the L/2

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 6, Issue 8, August 2017

933

All Rights Reserved © 2017 IJARECE

Fig:3 Proposed structure of the error computation block

Fig : 4 Proposed structure of the PPG. AOC remains for AND/OR

Adder trees are then included by a shift-add tree as indicated

by their place values. Each of the binary adder trees require
log2N stages of adders to include N partial products, and the

shift–add tree requires log2 L − 1 stages of adders to include

L/2 output of L/2 binary adder trees.

 The addition scheme for the error-computation block

for a four-tap filter and input word size L = 8 is appeared in

Fig. 8. For N = 4 and L = 8, the adder network requires four

binary adder trees of two stages each and a two-stage shift–

add tree. In this figure, we have demonstrated all conceivable

locations of pipeline latches by dashed lines, to diminish the

critical path to one addition time. The last adder in the shift–

add tree add to the maximum delay to the critical path. Based

on that perception, we have recognized the pipeline latches

that don't contribute fundamentally to the critical path and

would bar those with no observable increment of the critical

path. The location of pipeline latches for filter lengthsN = 8,

16, and 32 and for input size L = 8. The pipelining is

performed by a feed forward cut-set retiming of the error

computation block.

3A.Structure of adder: The proposed structure for adder tree

and shift-add tree both are utilizing adder. In that adder place
we are placing Ripple carry adder and Kogge stone adders.

Kogge stone adder has high performance and lower delay

compared with Ripple carry adder. The Kogge Stone adder is a

parallel prefix frame carry look-ahead adder.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 6, Issue 8, August 2017

934

All Rights Reserved © 2017 IJARECE

Fig. 5. Structure and function of AND/OR cell. Binary operators .and
+ in (b) and (c) are implemented utilizing AND as well as OR gates,
separately.

Fig 6: 8bit ripple carry adder

Fig 7: kogge stone parallel prefix adder

B. Pipelined Structure of the Weight-Update Block

The proposed structure for the weight-update block is

appeared in Fig.9. It performs N multiply- accumulate

operations of the form (μ × e) × xi + wi to update N filter

weights. The step size μ is taken as a negative power of 2 to

understand the multiplication with as of late accessible error

just by a shift operation. Each of the MAC units in this way

performs the multiplication of the shifted value of error with

the delay input samples xi come after by the addition with the

comparing old weight values wi. All the N multiplications for

the MAC operations are performed by N PPGs, come after by

N shift add trees. Each of the PPGs produces L/2 partial

product relating to the product of the as of late shifted error

value μ × e with L/2, the number of 2-b digits of the input

word xi , where the sub expression 3μ×e is shared within the

multiplier. Since the scaled mistake (μ×e) is multiplied with all

the N delayed input values in the weight-update block, this sub

expression can be shared over every one of the multipliers

also. The last output of MAC units constitute the desired
updated weights to be utilized as inputs to the error-

computation block as well as the weight-updated block for the

following iteration.

C. Adaptation Delay
As appeared in Fig. 2, the adaptation delay is divided into n1

and n2. The error-computation block produces the delayed

error by n1-1 cycles as appeared in Fig. 4, which is boost to the

weight-updated block appeared in Fig. 9 in the wake of scaling

by μ; at that point the input is delayed by 1 cycle before the

PPG to make the total delay presented by FIR filtering be n1.

In Fig.9, the weight-updated block produce wn-1-n2, and the

weights are delayed by n2+1 cycles. Although, it should be this

prompts significant reduction of the adder complexity. noticed

that the delay by 1 cycle is because of the latch before the

PPG, which is involved into the delay of the error computation

block, i.e., n1. Consequently, the delay produced in the weight

updated block moves toward becoming n2. In the event that the

location of pipeline latches are chosen as inTable I, n1moves

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 6, Issue 8, August 2017

935

All Rights Reserved © 2017 IJARECE

toward becoming 5,where three latches are in the error

computation block, one latches is after the subtraction in Fig.

3, and the other latch is before PPG in Fig. 9. Additionally, n2

is set to 1 from a latch in the shiftadd tree in the weight-

updated block.

Fig. 8. Adder construction of the filtering unit for N = 4 and L = 8.

Fig: 9. Proposed structure of the weight-updated block

TABLE I

LOCATION PIPELINE LATCHES FOR L=8

N
Error-Computation Block Weight-Update Block

Adder Tree Shift-add tree Shift-add tree

8 Stage-2 Stage-1 and 2 Stage-1

IV. SIMULATION RESULTS

The proposed designs were also implemented on the field

programmable gate array (FPGA) platform of Xilinx devices.

The number of slices (NOS) and the maximum usable

frequency (MUF) using two different devices of Spartan-3A

(XC3SD1800A-4FG676) and Virtex-4 (XC4VSX35-10FF668)

are listed in Table II. The proposed design-II, after the
pruning, offers nearly 11.86% less slice-delay product, which

is calculated as the average NOS/MUF, for N = 8, 16, 32, and

two devices.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 6, Issue 8, August 2017

936

All Rights Reserved © 2017 IJARECE

Simulation waveform:1 for PPG structure

Simulation waveform:2 for Error-Computation Block structure

Simulation waveform:3 for Weight-Updated Block structure

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 6, Issue 8, August 2017

937

All Rights Reserved © 2017 IJARECE

Simulation waveform :4 for Adaptive filter using ripple carry

adder

Simulation waveform :5 for Adaptive filter using kogge stone

adder

TABLE II

FPGA IMPLEMENTATION OF PROPOSED DESIGNS FOR L=8 AND

N=8

 Ripple carry adder Kogge stone adder

NOS LUTs 1809 1034

NOS Registers 116 102

Delay 8.200ns 5.706ns

NOS stands for the number of slices

V. Conclusion:

We present a delay-power effective low adaptation delay

design of LMS adaptive filter. We utilized a novel PPG for

effective design of general multiplication and inner product

computation by regular sub expression sharing. In addition, we

have proposed kogge stone adder structure for effective

addition scheme for inner-product computation to reduce the

adaptation delay and to reduce the critical path to help high

input sampling rates. Beside this, we proposed a methodology

for advanced balanced pipelining over the time consuming

blocks of the structure to decrease the adaptation delay and
power utilization, too. The proposed structure included the less

adaptation delay comparing with the existing structures.

REFERENCES

[1] G. Long, F. Ling, and J. G. Proakis, “Corrections to

„The LMS algorithm with delayed coefficient

adaptation‟,” IEEE Trans. Signal Process., vol. 40,

no. 1, pp. 230–232, Jan. 1992.

[2] P. K. Meher and S. Y. Park, “Low adaptation-delay

LMS adaptive filter part-I:Introducing a novel

multiplication cell,” in Proc. IEEE Int. Midwest
Symp. Circuits Syst.,Aug. 2011, pp. 1–4.

[3] P. K. Meher and S. Y. Park, “Low adaptation-delay

LMS adaptive filter part-II: An optimized

architecture,” in Proc. IEEE Int. Midwest Symp.

Circuits Syst., Aug. 2011, pp. 1–4.

[4] P. K. Meher and M. Maheshwari, “A high-speed FIR

adaptive filter architecture using a modified delayed

LMS algorithm,” in Proc. IEEE Int. Symp. Circuits

Syst., May 2011,pp. 121–124.

[5] G. Long, F. Ling, and J. G. Proakis, “The LMS

algorithm with delayed coefficient adaptation,” IEEE
Trans. Acoust., Speech, Signal Process.,vol. 37, no.

9, pp. 1397–1405, Sep. 1989.

[6] G. Long, F. Ling, and J. G. Proakis, “Corrections to

„The LMS algorithm with delayed coefficient

adaptation‟,” IEEE Trans. Signal Process.,vol. 40,

no. 1, pp. 230–232, Jan. 1992.

ISSN: 2278 – 909X
International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE)

Volume 6, Issue 8, August 2017

938

All Rights Reserved © 2017 IJARECE

[7] M. D. Meyer and D. P. Agrawal, “A modular

pipelined implementation of a delayed LMS

transversal adaptive filter,” in Proc. IEEE Int. Symp.

Circuits Syst., May 1990, pp. 1943–1946.

[8] Simon hykin, Editor, “adaptive filter theory”,

International edition, (1996).

[9] [1] B. Widrow and S. D. Stearns, Adaptive Signal

Processing. EnglewoodCliffs, NJ, USA: Prentice-

Hall, 1985.

[10] S. Haykin and B. Widrow, Least-Mean-Square

Adaptive Filters. Hoboken, NJ, USA: Wiley, 2003.

Authors

P. Swapnakumari, Studying M.Tech, Final year in VLSI

&ES Specialization, ECEDepartment,VelagapudiRamakrishna

SiddharthaEngineeringCollege,Kanuru,Vijayawada-

7,AffiliatedtoJawaharlalNehru Technological University
Kakinada, Andhra Pradesh.

T.

Rajasekhar,AssistantProfessor,ECEDepartment,VelagapudiR

amakrishnaSiddhartha Engineering

College,Kanuru,Vijayawada-

7,AffiliatedtoJawaharlalNehruTechnologicalUniversity –

Kakinada, AndhraPradesh.

